A model-based local fault size measurement method of rolling bearing considering load influence

Author(s):  
Chang Liu ◽  
Gang Cheng ◽  
Xihui Chen ◽  
Yong Li ◽  
Wei Gu

Rolling bearing local fault vibration mechanism research is the theoretical basis of advanced bearing fault diagnosis and size measurement technology. In this paper, the additional displacement and impact force excitation of inner and outer ring local faults under low speed and heavy load condition are analysed, and rolling bearing local fault vibration model is established. The simulated dual impulse characteristics have higher accuracy under low speed and heavy load condition compared with other traditional local fault models. The outer and inner ring fault simulated dual impulse interval errors are 6.7% and 1.1%, respectively. Then the local fault vibration mechanism is analysed, and the influence of heavy load condition on dual impulse characteristic is not negligible. Finally, a size measurement method of bearing local fault based on vibration model is proposed. Two sizes of outer ring fault bearing are tested in four different working conditions, and the average measurement error is 3.78%. The results show that the proposed method can overcome the influence of different working conditions and accurately measure different local fault sizes.

2011 ◽  
Vol 308-310 ◽  
pp. 1792-1795
Author(s):  
Li Ming Lu

In the paper a new kind of rolling-sliding blend bearing has been studied. In order to comparing the new bearings and rolling bearings in the carrying capacity and service life, the stresses on the inner ring, the outer ring and the roller of rolling bearing and rolling-sliding blend bearing are analyzed by establishing the finite element model and solving it with finite element analysis software. The results show that the width of the stress concentration area on the outer ring and the roller and the inner ring of rolling-sliding blend bearing is 25 per cent narrower than that of rolling bearing and the depth of the largest stress on the outer ring and the roller and the inner ring of rolling-sliding blend bearing is 25 per cent shallower than that of rolling bearing and the largest stress on the middle and the end of the outer ring and the roller and the inner ring of rolling-sliding blend bearing is much smaller than that of rolling bearing. In the same case rolling-sliding blend bearings have greater carrying capacity and longer service life than rolling bearings.


2012 ◽  
Vol 251 ◽  
pp. 318-322
Author(s):  
Bao Liang Guo ◽  
Zhi Shan Duan ◽  
Jian Xiao Zheng ◽  
Li Chen Shi

Aiming at the discrimination problem of the multi-point pitting corrosion fault for the vibrating machine rolling bearing, the vibration model of the multi-point pitting corrosion fault was built for the vibrating machine rolling bearing with inner ring and outer ring based on Hertz contact theory and the discrimination criterion of the multi-point pitting corrosion fault was proposed. At the same time, the theoretical model was simulated and the experiment was finished in the vibrating sieve. The experiment results are consistent with the theoretical analysis results. The results show that there is the obvious difference from the fault characteristic spectrum of the rolling bearing multi-point pitting corrosion for the vibrating machine and the rotating machinery. There is an obvious amplitude modulation phenomenon for the outer ring pitting corrosion fault of the vibrating machine rolling bearing, but there is not the amplitude modulation phenomenon for the outer ring pitting corrosion fault of the ideal rotating machinery rolling bearing. There is a slight amplitude modulation phenomenon for the inner ring pitting corrosion fault of the vibrating machine rolling bearing and but there is the obvious amplitude modulation phenomenon for the inner ring pitting corrosion fault of the ideal rotating machinery rolling bearing.


ICRT 2017 ◽  
2018 ◽  
Author(s):  
Wenchang Zhang ◽  
Yongqiang Liu ◽  
Yingying Liao ◽  
Pengfei Liu

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1094 ◽  
Author(s):  
Lanjun Wan ◽  
Hongyang Li ◽  
Yiwei Chen ◽  
Changyun Li

To effectively predict the rolling bearing fault under different working conditions, a rolling bearing fault prediction method based on quantum particle swarm optimization (QPSO) backpropagation (BP) neural network and Dempster–Shafer evidence theory is proposed. First, the original vibration signals of rolling bearing are decomposed by three-layer wavelet packet, and the eigenvectors of different states of rolling bearing are constructed as input data of BP neural network. Second, the optimal number of hidden-layer nodes of BP neural network is automatically found by the dichotomy method to improve the efficiency of selecting the number of hidden-layer nodes. Third, the initial weights and thresholds of BP neural network are optimized by QPSO algorithm, which can improve the convergence speed and classification accuracy of BP neural network. Finally, the fault classification results of multiple QPSO-BP neural networks are fused by Dempster–Shafer evidence theory, and the final rolling bearing fault prediction model is obtained. The experiments demonstrate that different types of rolling bearing fault can be effectively and efficiently predicted under various working conditions.


2013 ◽  
Vol 427-429 ◽  
pp. 257-261
Author(s):  
Li Xia Sun ◽  
Jian Wei Yao ◽  
Fu Guo Hou ◽  
Xin Zhao

In order to investigate self-excited vibration mechanism of wheel-rail lateral contact system, a two DOF elasticity position wheelset lateral vibration model is established which considers the dry friction; the mechanism of the wheelset lateral self-excited vibration is investigated from the energy point of view. It shows that: the bifurcation diagram of this wheel-rail lateral contact system has a supercritical Hopf bifurcation. The energy of self-excited vibration derives from a part of traction energy; the creep rate in the wheel-rail system act as a feedback mechanism in the wheelset lateral self-excited vibration system. The stability of the wheelset self-excited vibration system depends mainly on the total energy removed from and imported into the system.


2012 ◽  
Vol 226-228 ◽  
pp. 1436-1440
Author(s):  
Li Jun Gao ◽  
Yong Sheng Zhang ◽  
Qin Li

In this paper, dynamic measurement method is applied to test the damage of the bottom reinforced concrete column. The comparison between the calculated first order frequency of the bottom reinforced concrete column and the measured first order frequency shows that the result is consistent. This indicates that this approach is feasible. However, in recent years, dynamic measurement method is widely used in non-destructive testing of bridges and floors. The principle of the dynamic measurement method for the detection of reinforced concrete column utilizes the measured natural frequency, vibration model and damping ratio of reinforced concrete column and such inherent dynamic characteristics of indicators to reflect the damage of reinforced concrete column. And there is no secondary injury for the column. The simplified method of structure dynamics is applied to calculate the frequency of the bottom reinforced concrete column. And the simple calculation method is verified by experiment and practice.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Yuan ◽  
Yong Lv ◽  
Gangbing Song

Rolling bearings are vital components in rotary machinery, and their operating condition affects the entire mechanical systems. As one of the most important denoising methods for nonlinear systems, local projection (LP) denoising method can be used to reduce noise effectively. Afterwards, high-order polynomials are utilized to estimate the centroid of the neighborhood to better preserve complete geometry of attractors; thus, high-order local projection (HLP) can improve noise reduction performance. This paper proposed an adaptive high-order local projection (AHLP) denoising method in the field of fault diagnosis of rolling bearings to deal with different kinds of vibration signals of faulty rolling bearings. Optimal orders can be selected corresponding to vibration signals of outer ring fault (ORF) and inner ring fault (IRF) rolling bearings, because they have different nonlinear geometric structures. The vibration signal model of faulty rolling bearing is adopted in numerical simulations, and the characteristic frequencies of simulated signals can be well extracted by the proposed method. Furthermore, two kinds of experimental data have been processed in application researches, and fault frequencies of ORF and IRF rolling bearings can be both clearly extracted by the proposed method. The theoretical derivation, numerical simulations, and application research can indicate that the proposed novel approach is promising in the field of fault diagnosis of rolling bearing.


2011 ◽  
Vol 243-249 ◽  
pp. 1646-1650
Author(s):  
Wen Ping Li ◽  
Shu Li Chen ◽  
Mu Biao Su

In this paper, the vehicle-bridge lateral vibration mechanism was analyzed; the vehicle-bridge vibration model was built and the lateral reinforcement schemes of open steel plate bridges were designed. Numbers of analysis were carried out for the lateral vibration of 40m deck steel plate bridges before and after reinforcement, under input of random artificial hunting waves and track irregularity. The results showed that, the frequency of hunting motion is approaching loaded frequency of the girder. The larger lateral amplitude appears on the bridge when the hunting wavelength is around 8~9m and the velocity of the train is around 55~70km/h. The wavelength is longer, the resonant velocity of the bridge is higher.


Sign in / Sign up

Export Citation Format

Share Document