Study on the Relationship between Traffic State and Pollutant Emissions in Highway Tunnel

2021 ◽  
Author(s):  
Hongke Xu ◽  
Jiachen Cao ◽  
Shan Lin ◽  
Chaozhi Zhao ◽  
Hongliang Cheng
Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1264
Author(s):  
Meng Zeng ◽  
Lihang Liu ◽  
Fangyi Zhou ◽  
Yigui Xiao

Many studies have found that FDI can reduce the pollutant emissions of host countries. At the same time, the intensity of environmental regulation would affect the emission reduction effect of FDI in the host country. This study aims to reveal the internal mechanisms of this effect. Specifically, this paper studies the impact of FDI on technological innovation in China’s industrial sectors from the perspective of technology transactions from 2001 to 2019, and then analyzes whether the intensity of environmental regulation can promote the relationship. Results indicate that FDI promotes technological innovation through technology transactions. In addition, it finds that the intensity of environmental regulation significantly positively moderates the relationship between FDI and technological innovation, which is achieved by positively moderating the FDI–technology transaction relationship. Regional heterogeneity analysis is further conducted, and results show that in the eastern and western regions of China, FDI can stimulate technological innovation within regional industrial sectors through technology trading. Moreover, environmental regulation has a significant positive regulatory effect on the above relationship, but these effects are not supported by evidence in the central region of China.


2021 ◽  
Vol 880 (1) ◽  
pp. 012004
Author(s):  
H Mahidin ◽  
M T Latif ◽  
A Hamdan ◽  
J Salleh ◽  
D Dominick ◽  
...  

Abstract Sarawak Region of Malaysia is currently experiencing a high demand for capital needs such as transformation forest to plantations, economic development, and improving transportation systems. Those land cover changes will increase primary pollutant emissions and trigger surface O3 formation. Surface O3 is a secondary pollutant and a significant greenhouse gas contributing to climate change and declining air quality. In this study, variations in surface O3 concentrations at urban and suburban sites in Sarawak were explored using the Malaysian Department of Environment data spanning a two-year cycle (2018-2019). The primary aim of this study is to ascertain the variation of surface O3 concentrations reported at four monitoring stations in Sarawak, namely Kuching (SQ1) (Urban), Sibu (SQ2) (Suburban), Bintulu (SQ3) (Suburban), and Miri (SQ4) (Suburban). The study also analysed the relationship between O3 distribution and nitrogen oxides (NO and NO2). The findings showed that O3 concentrations observed in the region during the study period were lower than the maximum permissible value of 100 ppbv suggested by the Malaysian Ambient Air Quality Standard (2020). SQ4 (Miri) at suburban sites recorded the highest average surface O3 concentrations with an hourly average and daily maximum O3 concentration of 15.7 and 89.5 ppbv, respectively. Temperatures, UV exposure, and wind speed all impact the concentration of surface O3 in Sarawak. In all stations, concentrations of O3 were inversely linked with NO, NO2, and relative humidity (RH). This research will assist the relevant agency in forecast, monitor, and mitigate the level of O3 in the ambient environment, especially in the Sarawak Region.


2013 ◽  
Vol 734-737 ◽  
pp. 1609-1612
Author(s):  
Wei Zhan ◽  
Yue Quan Shang ◽  
Feng Xia Chi

Based on the investigation of traffic flow in a typical highway tunnel group, the traffic flow characteristics were analyzed by catastrophe theory with the relationship of the speed, volume and density. The discontinuous leaping change phenomenon of the traffic data under large traffic volume is better explained by the catastrophe model than the traditional ways. The value of critical density can be obtained by analyzing the critical state of traffic flow. Then the traffic flow warning can be realized in highway tunnel group region. The data and results can be used for the reference of taking traffic control measures by highway management.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 32
Author(s):  
Monika Załuska ◽  
Katarzyna Gładyszewska-Fiedoruk

The level of environmental quality is the result of many factors, and the most important of these is human activity. A responsible approach to the environment is looking for methods to eliminate pollution from the environment. Waste incineration is a way to rationally manage and process waste, minimize emissions of air pollutants and ecologically produce heat and electricity. The purpose of this article is to build and analyze a regression model describing the relationship of pollutant emissions to air from waste incineration plants depending on various factors.


2013 ◽  
Vol 726-731 ◽  
pp. 1138-1141
Author(s):  
Neng Shen

Taking environmental efficiency as the exclusive indicator for the relationship between environmental performance and industrial development, the author calculated the environmental efficiency of China under different pollutant disposability assumptions, while also considering environmental pollution. In addition, the author uses partial econometric model to interprets the spatial characteristics of environmental efficiency and extracts the main factors that influence the environmental efficiency. The analysis results show that: when impact of undesirable outputs (pollutant emissions) is considered, the average environmental efficiency of Chinas industries declines markedly. Environmental efficiency has the obvious effect of the spatial external effect, and when the government makes energy saving strategies, inter-regional energy cooperation and the proliferation of advanced production technology should be given more priority.


Sign in / Sign up

Export Citation Format

Share Document