Slope Stabilization along a Buried Crude-Oil Pipeline in Ice-Rich Permafrost

2021 ◽  
Author(s):  
Peppi Croft ◽  
Oliver T. Hoopes ◽  
Frank J. Wuttig ◽  
Charles Schulz ◽  
Wendy L. Mathieson
2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2021 ◽  
Vol 1927 (1) ◽  
pp. 012021
Author(s):  
Junjiang Liu ◽  
Liang Feng ◽  
Dake Yang ◽  
Xianghui Li

2021 ◽  
Vol 205 ◽  
pp. 108881
Author(s):  
Xuedong Gao ◽  
Qiyu Huang ◽  
Xun Zhang ◽  
Yu Zhang ◽  
Xiangrui Zhu ◽  
...  

Author(s):  
Yuanyuan Chen ◽  
Jing Gong ◽  
Xiaoping Li ◽  
Nan Zhang ◽  
Shaojun He ◽  
...  

Pipeline commissioning, which is a key link from engineering construction to production operation, is aim to fill an empty pipe by injecting water or oil to push air out of it. For a large-slope crude oil pipeline with great elevation differences, air is fairly easy to entrap at downward inclined parts. The entrapped air, which is also called air pocket, will cause considerable damage on pumps and pipes. The presence of it may also bring difficulties in tracking the location of the liquid head or the interface between oil and water. It is the accumulated air that needed to be exhausted in time during commissioning. This paper focuses on the simulation of liquid-gas replacement in commissioning process that only liquid flow rate exists while gas stays stagnant in the pipe and is demanded to be replaced by liquid. Few previous researches have been found yet in this area. Consequently, the flow in a V-section pipeline consisted of a downhill segment and a subsequent uphill one is used here for studying both the formation and exhaustion behaviors of the intake air. The existing two-fluid model and simplified non-pressure wave model for gas-liquid stratified flow are applied to performance the gas formation and accumulation. The exhausting process is deemed to be a period in which the elongated bubble (Taylor bubble) is fragmented into dispersed small bubbles. A mathematical model to account for gas entrainment into liquid slug is proposed, implemented and incorporated in a computational procedure. By taking into account the comprehensive effects of liquid flow rate, fluid properties, surface tension, and inclination angle, the characteristics of the air section such as the length, pressure and mass can be calculated accurately. The model was found to show satisfactory predictions when tested in a pipeline. The simulation studies can provide theoretical support and guidance for field engineering application, which are meanwhile capable of helping detect changes in parameters of gas section. Thus corresponding control measures can be adopted timely and appropriately in commissioning process.


2013 ◽  
Vol 734-737 ◽  
pp. 2659-2663
Author(s):  
Yun Bin Ma ◽  
Dong Jie Tan ◽  
Hong Yuan Jing ◽  
Quan Xue ◽  
Cheng Zhi Zhang

The crude oil pipeline from MoHe to DaQing (hereafter called Mo-Da pipeline) is part of China-Russia oil pipeline. Mo-Da pipeline is the first pipeline that through high latitude cold regions of China. The pipeline is in so complicated geography environment that many kinds of permafrost hazard are easily to happen including frost heave, thaw settlement, slope instabilities, and collapse and so on. The pipeline and the permafrost act and react upon one another. On one hand, soil frost heave and thaw settlement can produce extra stresses on pipe walls, which may result in centralized stresses and plastic deformations under certain conditions, even causes pipeline faults. On the other hand, buried pipeline will disturb ambient environment and then degrade the permafrost soil and finally impact safety of the pipeline. This paper mainly introduces the permafrost hazards of Mo-Da pipeline and demonstrates some methods for monitoring the influence of permafrost.


Author(s):  
Guillaume Vinay ◽  
Petrus Tri Bhaskoro ◽  
Isabelle Hénaut ◽  
Mior Zaiga Sariman ◽  
Astriyana Anuar ◽  
...  

2014 ◽  
Vol 6 ◽  
pp. 894256
Author(s):  
Jian Zhang ◽  
Yi Wang ◽  
Xinran Wang ◽  
Handu Dong ◽  
Jinping Huang ◽  
...  

A mathematical model is established for the preheating commissioning process of waxy crude oil pipelines. The governing equations are solved by the finite volume method and the finite difference method. Accordingly, numerical computations are made for the Niger crude oil pipeline and the Daqing-Tieling 3rd pipeline. The computational results agree well with the field test data. On this basis, fluid temperature in the process of the preheating commissioning is studied for single station-to-station pipeline. By comparing different preheating modes, it is found that the effect of forward preheating is the best. Under different preheating commissioning conditions, the optimal combination of outlet temperature and flow rate is given.


1980 ◽  
Author(s):  
T. W. Temple ◽  
F. L. Foltz ◽  
H. R. Jamalallail

The 747-mile East-West Crude Oil Pipeline across Saudi Arabia employs 60 gas turbines for pumping and power generation. Mainline pump drives are three United Technologies Corporation FT4A-9 modular industrial gas turbines at each of 11 pumping stations. Two of the three mainline gas turbines are required for maximum throughput, while the third is an operational spare. High reliability and availability constraints and the remote unmanned station concept underscore the need for a modern maintenance information system. This paper describes an independent multiple-fault diagnostic/prognostic system, employing a patented gas path analysis technique.


Sign in / Sign up

Export Citation Format

Share Document