Numerical Comparison of Wave Synthesis Methods

Author(s):  
M. D. Miles ◽  
E. R. Funke
1988 ◽  
Vol 1 (21) ◽  
pp. 6
Author(s):  
M.D. Miles ◽  
E.R. Funke

A numerical comparison study is carried out on a variety of methods for synthesizing pseudo-random Gaussian wave records for laboratory wave generation. Three nonharmonic superposition methods and three time domain filtering procedures are compared to a harmonic FFT technique. The synthesis methods are evaluated on the basis of a statistical analysis of 16 standard wave parameters obtained from a set of 200 wave records. Second order group-bounded long wave components are also investigated.


2020 ◽  
Vol 228 (1) ◽  
pp. 1-2
Author(s):  
Michael Bošnjak ◽  
Nadine Wedderhoff

Abstract. This editorial gives a brief introduction to the six articles included in the fourth “Hotspots in Psychology” of the Zeitschrift für Psychologie. The format is devoted to systematic reviews and meta-analyses in research-active fields that have generated a considerable number of primary studies. The common denominator is the research synthesis nature of the included articles, and not a specific psychological topic or theme that all articles have to address. Moreover, methodological advances in research synthesis methods relevant for any subfield of psychology are being addressed. Comprehensive supplemental material to the articles can be found in PsychArchives ( https://www.psycharchives.org ).


Author(s):  
Dana Ganor-Stern

Past research has shown that numbers are associated with order in time such that performance in a numerical comparison task is enhanced when number pairs appear in ascending order, when the larger number follows the smaller one. This was found in the past for the integers 1–9 ( Ben-Meir, Ganor-Stern, & Tzelgov, 2013 ; Müller & Schwarz, 2008 ). In the present study we explored whether the advantage for processing numbers in ascending order exists also for fractions and negative numbers. The results demonstrate this advantage for fraction pairs and for integer-fraction pairs. However, the opposite advantage for descending order was found for negative numbers and for positive-negative number pairs. These findings are interpreted in the context of embodied cognition approaches and current theories on the mental representation of fractions and negative numbers.


2002 ◽  
Vol 7 (1) ◽  
pp. 31-42
Author(s):  
J. Šaltytė ◽  
K. Dučinskas

The Bayesian classification rule used for the classification of the observations of the (second-order) stationary Gaussian random fields with different means and common factorised covariance matrices is investigated. The influence of the observed data augmentation to the Bayesian risk is examined for three different nonlinear widely applicable spatial correlation models. The explicit expression of the Bayesian risk for the classification of augmented data is derived. Numerical comparison of these models by the variability of Bayesian risk in case of the first-order neighbourhood scheme is performed.


2016 ◽  
Vol 10 (6) ◽  
pp. 390 ◽  
Author(s):  
Qummare Azam ◽  
Mohd Azmi Ismail ◽  
Nurul Musfirah Mazlan ◽  
Musavir Bashir

2020 ◽  
Author(s):  
Mikhail Trought ◽  
Isobel Wentworth ◽  
Timothy Leftwich ◽  
Kathryn Perrine

The knowledge of chemical functionalization for area selective deposition (ASD) is crucial for designing the next generation heterogeneous catalysis. Surface functionalization by oxidation was studied on the surface of highly oriented pyrolytic graphite (HOPG). The HOPG surface was exposed to with various concentrations of two different acids (HCl and HNO3). We show that exposure of the HOPG surface to the acid solutions produce primarily the same -OH functional group and also significant differences the surface topography. Mechanisms are suggested to explain these strikingly different surface morphologies after surface oxidation. This knowledge can be used to for ASD synthesis methods for future graphene-based technologies.


Author(s):  
M. B. Sergeev ◽  
V. A. Nenashev ◽  
A. M. Sergeev

Introduction: The problem of noise-free encoding for an open radio channel is of great importance for data transfer. The results presented in this paper are aimed at stimulating scientific interest in new codes and bases derived from quasi-orthogonal matrices, as a basis for the revision of signal processing algorithms.Purpose: Search for new code sequences as combinations of codes formed from the rows of Mersenne and Raghavarao quasi-orthogonal matrices, as well as complex and more efficient Barker — Mersenne — Raghavarao codes.Results: We studied nested code sequences derived from the rows of quasi-orthogonal cyclic matrices of Mersenne, Raghavarao and Hadamard, providing estimates for the characteristics of the autocorrelation function of nested Barker, Mersenne and Raghavarao codes, and their combinations: in particular, the ratio between the main peak and the maximum positive and negative “side lobes”. We have synthesized new codes, including nested ones, formed on the basis of quasi-orthogonal matrices with better characteristics than the known Barker codes and their nested constructions. The results are significant, as this research influences the establishment and development of methods for isolation, detection and processing of useful information. The results of the work have a long aftermath because new original code synthesis methods need to be studied, modified, generalized and expanded for new application fields.Practical relevance: The practical application of the obtained results guarantees an increase in accuracy of location systems, and detection of a useful signal in noisy background. In particular, these results can be used in radar systems with high distance resolution, when detecting physical objects, including hidden ones.


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


2020 ◽  
Vol 9 (9) ◽  
pp. 6467-6482
Author(s):  
A.V Kabulov ◽  
E. Urunbaev ◽  
I. Normatov ◽  
A. Ashurov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document