Accuracy of MEPDG Dynamic Modulus Predictions for Short-Term and Long-Term Aged Asphalt Mixtures

2019 ◽  
Vol 145 (3) ◽  
pp. 04019025
Author(s):  
Mir S. Arefin ◽  
Tanvir Quasem ◽  
Munir Nazzal ◽  
Samer Dessouky ◽  
Ala R. Abbas
2015 ◽  
Vol 19 (2) ◽  
pp. 89
Author(s):  
Carlos Hernando Higuera Sandoval ◽  
Xiomara Vanessa Camargo Amaya ◽  
Edwin Alexander Suárez Molano

This article presents the results of the analysis of the effect of aging on the properties of asphalt and asphalt mixtures. The objective of this study was to compare the properties of the original asphalt and aged asphalt and the dynamic modulus of asphalt mixtures. The long-term aging was simulated by using Pressure Asphalt Vessel (PAV). Marshall and RAMCODES methodologies were used to determine the formula of work; values of dynamic modulus of designed mixtures were obtained by the indirect tensile test, using the Nottingham Asphalt Tester (NAT). The results showed an increase in the rigidity of the aged asphalt. Also, an increase of the stability and a decreased flow in the mixtures made with this type of binder was found. The dynamic modulus values of the mixtures containing aged asphalt showed an increase up to three times compared with those elaborated with original asphalt mixtures.


2013 ◽  
Vol 438-439 ◽  
pp. 383-386
Author(s):  
Ning Li Li ◽  
Xin Po Zhao ◽  
Cai Li Zhang ◽  
Qing Yi Xiao ◽  
Hu Hui Li

This article studies the low-temperature anti-cracking properties of plain asphalt mixtures and rubber-modified asphalt mixtures at different aging condition. Laboratory flexural test was conducted on the beam specimens of plain asphalt mixtures and rubber-modified asphalt mixtures. Experiment results indicate that rubber-modified asphalt mixtures have superior low-temperature anti-cracking performance than that of plain asphalt mixtures. Compared with the short term oven aging test, the long term oven aging test has more significant effect on the low-temperature anti-cracking of the mixture. In order to better represent the low-temperature anti-cracking of in-service aging asphalt pavement, the long term oven aging test should be used to appraise the low-temperature anti-cracking of asphalt pavements in china.


2007 ◽  
Vol 13 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Piotr Radziszewski

Permanent deformations, primarily in the form of ruts, are one of the basic asphalt pavement damages impairing its service properties. Application of appropriate asphalt mixtures and binder modification are effective methods for improving asphalt courses resistance. While being manufactured, stored, fitted into a road pavement and during long term service, bitumen binders and asphalt mixtures are subject to continuous unfavourable ageing processes during which pavement courses characteristics change considerably, resistance to permanent deformations being among them. This article presents rut and dynamic creep test results of concrete, SMA (stone mastic asphalt), MNU (thin courses of non‐continuous grain mixtures), Superpave mixture and porous asphalt mixture of two air void content percentages: 15 %, 20 %. Asphalt concrete mixtures, MNU's and porous asphalt mixtures contained elastomer, plastomer and fine rubber modified binders. Samples for laboratory rut tests were made by slab compaction because this method, as the author's previous research had shown, was the closest to ‘in‐situ’ conditions. Resistance to permanent deformations of the examined specimens was evaluated before aging, after technological aging (short term ageing) and after service ageing (long‐term ageing). The test results show that resistance to permanent deformations depends on the kind of asphalt mixture and binder applied. Concrete asphalts with fine rubber modified bitumens and concrete asphalts with 7 % polymer modified binders as well as SMA's and Superpave mixtures with unmodified binders appeared to be most resistant to permanent deformations after a long‐term laboratory ageing. It was proved that the overall evaluation of resistance to permanent deformations could be obtained by rut and creep testing of asphalt mixtures exposed to short‐ and long‐term ageing. Simultaneous determining 4 parameters: maximum rut depth after short‐term ageing, rutting coefficient after operational ageing, stiffness creeping modulus after long‐term ageing and cumulated deformation after short‐term ageing, facilitates full characteristics of modified asphalt mixes designed to be built in the wearing course of a road pavement.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 953 ◽  
Author(s):  
Adham Mohammed Alnadish ◽  
Mohamad Yusri Aman ◽  
Herda Yati Binti Katman ◽  
Mohd Rasdan Ibrahim

The long-term aging of the asphalt mixtures has become a major concern because it decreases the lifespan of the asphalt layer. In this study, the asphalt mixtures incorporating steel slag aggregates were reinforced with synthetic fibers as a novel contribution in terms of decreasing the effect of aging on the performance of the asphalt mixtures. However, different mixtures—namely, Mix0, Mix1, and Mix2—were subjected to long-term oven aging to study the effect of the aging on the performance of the asphalt mixes. Mix0 consisted of coarse and fine granite aggregates, while Mix1 was composed of coarse steel slag aggregate and fine granite aggregate. Mix2 represents the reinforced asphalt mixtures incorporating coarse steel slag aggregate and reinforced with the synthetic fibers of polyvinyl alcohol, acrylic, and polyester at the proportion of 0.3% by weight of the aggregates. The conducted performance tests were resilient modulus, rutting depth, and cracking resistance. The outputs of the performance tests for the unaged asphalt mixes displayed that the mixtures incorporating coarse steel slag aggregate exhibited better performance than the mixtures containing granite aggregate. Meanwhile, the reinforced asphalt mixtures have shown a lower resilient modulus and a higher permanent deformation than the unreinforced asphalt mixes due to the elastic behavior. Otherwise, the reinforced asphalt mixtures have shown superior resistance to cracking in comparison to the unreinforced mixtures. On the other hand, the performance of the aged asphalt mixtures demonstrated that the mixtures containing granite aggregates exhibited a lower susceptibility to aging than the mixtures incorporating steel slag aggregate. Meanwhile, the performance of the aged reinforced asphalt mixtures showed that introducing synthetic fibers has decreased the effect of the long-term oven aging.


2011 ◽  
Vol 255-260 ◽  
pp. 3350-3353
Author(s):  
Pei Long Li ◽  
Zhan Ding ◽  
Zheng Qi Zhang

Two gradations of asphalt mixtures were conducted to short term and long term aging tests. And then, static creep test was implemented on the samples of mixture. According to creep compliance curves from the stress-strain relations, Burgers viscoelastic model parameters were got to analyze the influences of aging effect on the viscoelastic response of asphalt mixture. The results and analysis indicated that aging is an important reason introducing viscoelasticity changes of asphalt mixture. For aged asphalt mixtures, the stiffness increases, the flexibility declines, the instantaneous elastic and the viscous compliance decrease. But short-term aging and long-term aging have different effects. And the viscoelastic parameters of the asphalt mixture with large voids vary more significantly, so aging process is much faster.


Sign in / Sign up

Export Citation Format

Share Document