Estimating Potential Evapotranspiration

1982 ◽  
Vol 108 (3) ◽  
pp. 225-230 ◽  
Author(s):  
George H. Hargreaves ◽  
Zohrab A. Samani
2019 ◽  
Vol 53 (5) ◽  
pp. 399-416
Author(s):  
V. M. Tytar ◽  
Ya. R. Oksentyuk

Abstract In this study an attempt is made to highlight important variables shaping the current bioclimatic niche of a number of mite species associated with the infestation of stored products by employing a species distribution modeling (SDM) approach. Using the ENVIREM dataset of bioclimatic variables, performance of the most robust models was mostly influenced by: 1) indices based on potential evapotranspiration, which characterize ambient energy and are mostly correlated with temperature variables, moisture regimes, and 2) strong fluctuations in temperature reflecting the severity of climate and/or extreme weather events. Although the considered mite species occupy man-made ecosystems, they remain more or less affected by the surrounding bioclimatic environment and therefore could be subjected to contemporary climate change. In this respect investigations are needed to see how this will affect future management targets concerning the safety of food storages.


2010 ◽  
Vol 26 (1) ◽  
pp. 126-129 ◽  
Author(s):  
Su-ping WANG ◽  
Lian-chun SONG ◽  
Yong-xiang HAN

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Cristina Mihaescu ◽  
Daniel Dunea ◽  
Adrian Gheorghe Bășa ◽  
Loredana Neagu Frasin

Phomopsis juglandina (Sacc.) Höhn., which is the conidial state of Diaporthe juglandina (Fuckel) Nitschke, and the main pathogen causing the dieback of branches and twigs of walnut was recently detected in many orchards from Romania. The symptomatological, morphological, ultrastructural, and cultural characteristics, as well as the pathogenicity of an isolate of this lignicolous fungus, were described and illustrated. The optimum periods for infection, under the conditions prevailing in Southern Romania, mainly occur in the spring (April) and autumn months (late September-beginning of October). Strong inverse correlations (p < 0.001) were found between potential evapotranspiration and lesion lengths on walnut branches in 2019. The pathogen forms two types of phialospores: alpha and beta; the role of beta phialospores is not well known in pathogenesis. In Vitro, the optimal growth temperature of mycelial hyphae was in the range of 22–26 °C, and the optimal pH is 4.4–7. This pathogen should be monitored continuously due to its potential for damaging infestations of intensive plantations.


Earth ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 340-356
Author(s):  
Forrest W. Black ◽  
Jejung Lee ◽  
Charles M. Ichoku ◽  
Luke Ellison ◽  
Charles K. Gatebe ◽  
...  

The present study investigated the effect of biomass burning on the water cycle using a case study of the Chari–Logone Catchment of the Lake Chad Basin (LCB). The Chari–Logone catchment was selected because it supplies over 90% of the water input to the lake, which is the largest basin in central Africa. Two water balance simulations, one considering burning and one without, were compared from the years 2003 to 2011. For a more comprehensive assessment of the effects of burning, albedo change, which has been shown to have a significant impact on a number of environmental factors, was used as a model input for calculating potential evapotranspiration (ET). Analysis of the burning scenario showed that burning grassland, which comprises almost 75% of the total Chari–Logone land cover, causes increased ET and runoff during the dry season (November–March). Recent studies have demonstrated that there is an increasing trend in the LCB of converting shrubland, grassland, and wetlands to cropland. This change from grassland to cropland has the potential to decrease the amount of water available to water bodies during the winter. All vegetative classes in a burning scenario showed a decrease in ET during the wet season. Although a decrease in annual precipitation in global circulation processes such as the El Niño Southern Oscillation would cause droughts and induce wildfires in the Sahel, the present study shows that a decrease in ET by the human-induced burning would cause a severe decrease in precipitation as well.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 155
Author(s):  
Anita Drumond ◽  
Milica Stojanovic ◽  
Raquel Nieto ◽  
Luis Gimeno ◽  
Margarida L. R. Liberato ◽  
...  

A large part of the population and the economic activities of South America are located in eastern regions of the continent, where extreme climate events are a recurrent phenomenon. This study identifies and characterizes the dry and wet climate periods at domain-scale occurring over the eastern South America (ESA) during 1980–2018 through the multi-scalar Standardized Precipitation–Evapotranspiration Index (SPEI). For this study, the spatial extent of ESA was defined according to a Lagrangian approach for moisture analysis. It consists of the major continental sink of the moisture transported from the South Atlantic Ocean throughout the year, comprising the Amazonia, central Brazil, and the southeastern continental areas. The SPEI for 1, 3, 6, and 12 months of accumulation was calculated using monthly precipitation and potential evapotranspiration time series averaged on ESA. The analysis of the climate periods followed two different approaches: classification of the monthly SPEI values as mild, moderate, severe, and extreme; the computation of the events and their respective parameters (duration, severity, intensity, and peak). The results indicate that wet periods prevailed in the 1990s and 2000s, while dry conditions predominated in the 2010s, when the longest and more severe dry events have been identified at the four scales.


Sign in / Sign up

Export Citation Format

Share Document