Selective adsorption, bound states, and potential parameters for He, Ne, and Ar interacting with a Cu(110) surface

2006 ◽  
Vol 124 (11) ◽  
pp. 114703 ◽  
Author(s):  
T. Andersson ◽  
P. Linde ◽  
M. Hassel ◽  
S. Andersson
2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


Author(s):  
G.A. Bayramova ◽  

In the present work, an analytical solution for bound states of the modified Schrödinger equation is found for the new supposed combined Manning-Rosen potential plus the Yukawa class. To overcome the difficulties arising in the case l ≠ 0 in the centrifugal part of the Manning-Rosen potential plus the Yukawa class for bound states, we applied the developed approximation. Analytical expressions for the energy eigenvalue and the corresponding radial wave functions for an arbitrary value l ≠ 0 of the orbital quantum number are obtained. And also obtained eigenfunctions expressed in terms of hypergeometric functions. It is shown that energy levels and eigenfunctions are very sensitive to the choice of potential parameters.


2015 ◽  
Vol 70 (4) ◽  
pp. 245-249 ◽  
Author(s):  
Hassan Hassanabadi ◽  
Antonio Soares de Castro

AbstractWith a general mixing of vector and scalar couplings in a two-dimensional world, a short-range potential is used to explore certain features of the bound states of a spinless particle. Bound-state solutions are found in terms of the Gauss hypergeometric series when the potential parameters obey a certain constraint relation limiting the dosage of a vector coupling. The appearance of the Schiff–Snyder–Weinberg effect for a strong vector coupling and a short-range potential as well as its suppression by the addition of a scalar coupling is discussed.


2020 ◽  
Vol 239 ◽  
pp. 03006
Author(s):  
Francesc Salvat-Pujol ◽  
Alfredo Ferrari

A general overview is presented of an effective model for the inclusion of (d,p) and (d,n) nucleon transfer direct reactions to bound states of the residual nucleus in the general-purpose radiation-transport code FLUKA. The model relies on the distorted-wave Born approximation, employing state-of-the-art subroutines for the numerical solution of the radial Schrödinger equation for the deuteron- and nucleon-nucleus wave-functions, as well as contemporary optical potential models for the latter two. A final variation of a handful of deuteron optical potential parameters provides the model with additional flexibility and enhances the agreement with experimental nucleon angular distributions in a considerable range of target nuclei and deuteron energies.


2021 ◽  
pp. 2150141
Author(s):  
A. J. Sous

In this work, we would like to apply the asymptotic iteration method (AIM) to a newly proposed Morse-like deformed potential introduced recently by Assi, Alhaidari and Bahlouli.[Formula: see text] This interesting potential can support bound states and/or resonances. However, in this work, we are only interested in bound states. We considered several choices of the potential parameters and obtained the associated spectrum. Finally, we study the small deformation limit at which this finite spectrum system will transition to infinite spectrum size.


2014 ◽  
Vol 29 (09) ◽  
pp. 1450042 ◽  
Author(s):  
Amlan K. Roy

Accurate ro-vibrational energies, eigenfunctions, radial densities, expectation values are presented for the exponential-type Manning–Rosen (MR) potential. Bound states, accurate up to ten significant figure are obtained by employing a simple, reliable generalized pseudospectral (GPS) method. All 55 eigenstates with n ≤10 are treated for arbitrary values of potential parameters, covering a wide range of interaction, through a non-uniform, optimal spatial radial discretization. A detailed investigation has been made on energy changes with respect to screening and other potential parameters. A systematic estimation of critical screening parameters is given for these eigenstates. Special emphasis has been given to higher states and in the vicinity of critical screening region. A thorough comparison with literature results is made wherever possible. This surpasses the accuracy of all other existing methods currently available. Several new states are reported for the first time. In short, a simple, efficient scheme for accurate calculation of this and other molecular potentials is offered.


2014 ◽  
Vol 69 (3-4) ◽  
pp. 111-121 ◽  
Author(s):  
Mahdi Eshghi ◽  
Sameer M. Ikhdair

The Dirac equation is solved exactly under the condition of spin symmetry for a spin 1=2 particle in the field of Mie-type potential and a Coulomb-like tensor interaction via the Laplace transform approach (LTA). The Dirac bound state energy equation and the corresponding normalized wave functions are obtained in closed forms with any spin-orbit coupling term k. The effects of the tensor interaction and the potential parameters on the bound states are also studied. It is noticed that the tensor interaction removes degeneracy between two states in spin doublets. Some numerical results are given and a few special cases of interest are presented. We have demonstrated that in the nonrelativistic limit, the solutions of the Dirac system converges to that of the Schrödinger system. The nonrelativistic limits of the present solutions are compared with the ones obtained by findings of other methods. Our results are sufficiently accurate for practical purpose.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350015 ◽  
Author(s):  
SAMEER M. IKHDAIR ◽  
MAJID HAMZAVI ◽  
A. A. RAJABI

Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r-2. Under some limitations, we can obtain solution for the RS Hulthén potential and the standard usual spherical WS potential (q = 1).


1988 ◽  
Vol 102 ◽  
pp. 129-132
Author(s):  
K.L. Baluja ◽  
K. Butler ◽  
J. Le Bourlot ◽  
C.J. Zeippen

SummaryUsing sophisticated computer programs and elaborate physical models, accurate radiative and collisional atomic data of astrophysical interest have been or are being calculated. The cases treated include radiative transitions between bound states in the 2p4and 2s2p5configurations of many ions in the oxygen isoelectronic sequence, the photoionisation of the ground state of neutral iron, the electron impact excitation of the fine-structure forbidden transitions within the 3p3ground configuration of CℓIII, Ar IV and K V, and the mass-production of radiative data for ions in the oxygen and fluorine isoelectronic sequences, as part of the international Opacity Project.


Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


Sign in / Sign up

Export Citation Format

Share Document