Self-Organizing Neural Network Models for State Anticipatory Systems

2006 ◽  
Author(s):  
Matti Pöllä
2011 ◽  
Vol 403-408 ◽  
pp. 3587-3593
Author(s):  
T.V.K. Hanumantha Rao ◽  
Saurabh Mishra ◽  
Sudhir Kumar Singh

In this paper, the artificial neural network method was used for Electrocardiogram (ECG) pattern analysis. The analysis of the ECG can benefit from the wide availability of computing technology as far as features and performances as well. This paper presents some results achieved by carrying out the classification tasks by integrating the most common features of ECG analysis. Four types of ECG patterns were chosen from the MIT-BIH database to be recognized, including normal sinus rhythm, long term atrial fibrillation, sudden cardiac death and congestive heart failure. The R-R interval features were performed as the characteristic representation of the original ECG signals to be fed into the neural network models. Two types of artificial neural network models, SOM (Self- Organizing maps) and RBF (Radial Basis Function) networks were separately trained and tested for ECG pattern recognition and experimental results of the different models have been compared. The trade-off between the time consuming training of artificial neural networks and their performance is also explored. The Radial Basis Function network exhibited the best performance and reached an overall accuracy of 93% and the Kohonen Self- Organizing map network reached an overall accuracy of 87.5%.


2000 ◽  
Vol 10 (01) ◽  
pp. 59-70 ◽  
Author(s):  
JONATHAN A. MARSHALL ◽  
VISWANATH SRIKANTH

Existing neural network models are capable of tracking linear trajectories of moving visual objects. This paper describes an additional neural mechanism, disfacilitation, that enhances the ability of a visual system to track curved trajectories. The added mechanism combines information about an object's trajectory with information about changes in the object's trajectory, to improve the estimates for the object's next probable location. Computational simulations are presented that show how the neural mechanism can learn to track the speed of objects and how the network operates to predict the trajectories of accelerating and decelerating objects.


2018 ◽  
Vol 13 (No. 1) ◽  
pp. 11-17 ◽  
Author(s):  
M. Mokarram ◽  
M. Najafi-Ghiri ◽  
A.R. Zarei

Soil fertility refers to the ability of a soil to supply plant nutrients. Naturally, micro and macro elements are made available to plants by breakdown of the mineral and organic materials in the soil. Artificial neural network (ANN) provides deeper understanding of human cognitive capabilities. Among various methods of ANN and learning an algorithm, self-organizing maps (SOM) are one of the most popular neural network models. The aim of this study was to classify the factors influencing soil fertility in Shiraz plain, southern Iran. The relationships among soil features were studied using the SOM in which, according to qualitative data, the clustering tendency of soil fertility was investigated using seven parameters (N, P, K, Fe, Zn, Mn, and Cu). The results showed that for soil fertility there is a close relationship between P and N, and also between P and Zn. The other parameters, such as K, Fe, Mn, and Cu, are not mutually related. The results showed that there are six clusters for soil fertility and also that group 1 soils are more fertile than the other.


2005 ◽  
Vol 15 (05) ◽  
pp. 349-355
Author(s):  
RICCARDO RIZZO

A large class of neural network models have their units organized in a lattice with fixed topology or generate their topology during the learning process. These network models can be used as neighborhood preserving map of the input manifold, but such a structure is difficult to manage since these maps are graphs with a number of nodes that is just one or two orders of magnitude less than the number of input points (i.e., the complexity of the map is comparable with the complexity of the manifold) and some hierarchical algorithms were proposed in order to obtain a high-level abstraction of these structures. In this paper a general structure capable to extract high order information from the graph generated by a large class of self–organizing networks is presented. This algorithm will allow to build a two layers hierarchical structure starting from the results obtained by using the suitable neural network for the distribution of the input data. Moreover the proposed algorithm is also capable to build a topology preserving map if it is trained using a graph that is also a topology preserving map.


2018 ◽  
Vol 4 (1) ◽  
pp. 419-422
Author(s):  
Redwan Abdo A. Mohammed ◽  
Daniel Schäle ◽  
Christoph Hornberger ◽  
Steffen Emmert

AbstractThe purpose of this study is to develop a method to discriminate spectral signatures in wound tissue. We have collected a training set of the intensity of the remitted light for different types of wound tissue from different patients using a TIVITA™ tissue camera. We used a neural network technique (self-organizing map) to group areas with the same spectral properties together. The results of this work indicates that neural network models are capable of finding clusters of closely related hyperspectral signatures in wound tissue, and thus can be used as a powerful tool to reach the anticipated classification. Moreover, we used a least square method to fit literature spectra (i.e. oxygenated haemoglobin (O2Hb), deoxygenated haemoglobin (HHb), water and fat) to the learned spectral classes. This procedure enables us to label each spectral class with the corresponding absorbance properties for the different absorbance of interest (i.e. O2Hb, HHb, water and fat). The calculated parameters of a testing set were consistent with the expected behaviour and show a good agreement with the results of a second algorithm which is used in the TIVITA™ tissue camera.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Sign in / Sign up

Export Citation Format

Share Document