Effect of void propagation on bump resistance due to electromigration in flip-chip solder joints using Kelvin structure

2007 ◽  
Vol 91 (13) ◽  
pp. 132113 ◽  
Author(s):  
Y. W. Chang ◽  
T. H. Chiang ◽  
Chih Chen
Author(s):  
Subramanya Sadasiva ◽  
Ganesh Subbarayan ◽  
Lei Jiang ◽  
Daniel Pantuso

Increasing miniaturization has led a significant increase in the current densities seen in flip-chip solder joints. This has made the study of failure in solder joints by void propagation due to electromigration and stress migration more important. In this study, we develop a phase field model for the motion of voids through a flip chip solder interconnect. We derive equations of motion for the void accounting for energetic contributions from the active factors of surface energy, stress and electric potential, taking into account both surface diffusion and transfer of the material through the bulk of the material. We describe the implementation of this model using finite elements, coupled with a commercial finite element solver to solve for the fields driving the void motion.


2006 ◽  
Vol 88 (1) ◽  
pp. 012106 ◽  
Author(s):  
Lingyun Zhang ◽  
Shengquan Ou ◽  
Joanne Huang ◽  
K. N. Tu ◽  
Stephen Gee ◽  
...  

2011 ◽  
Vol 99 (8) ◽  
pp. 082114 ◽  
Author(s):  
Tian Tian ◽  
Feng Xu ◽  
Jung Kyu Han ◽  
Daechul Choi ◽  
Yin Cheng ◽  
...  

1998 ◽  
Vol 515 ◽  
Author(s):  
S. Wiese ◽  
F. Feustel ◽  
S. Rzepka ◽  
E. Meusel

ABSTRACTThe paper presents crack propagation experiments on real flip chip specimens applied to reversible shear loading. Two specially designed micro testers will be introduced. The first tester provides very precise measurements of the force displacement hysteresis. The achieved resolutions have been I mN for force and 20 nm for displacement. The second micro tester works similar to the first one, but is designed for in-situ experiments inside the SEM. Since it needs to be very small in size it reaches only resolutions of 10 mN and 100nm, which is sufficient to achieve equivalence to the first tester. A cyclic triangular strain wave is used as load profile for the crack propagation experiment. The experiment was done with both machines applying equivalent specimens and load. The force displacement curve was recorded using the first micro mechanical tester. From those hysteresis, the force amplitude has been determined for every cycle. All force amplitudes are plotted versus the number of cycles in order to quantify the crack length. With the second tester, images were taken at every 10th … 100th cycle in order to locate the crack propagation. Finally both results have been linked together for a combined quatitive and spatial description of the crack propagation in flip chip solder joints.


2006 ◽  
Vol 89 (22) ◽  
pp. 221906 ◽  
Author(s):  
Fan-Yi Ouyang ◽  
K. N. Tu ◽  
Yi-Shao Lai ◽  
Andriy M. Gusak

2006 ◽  
Vol 89 (3) ◽  
pp. 032103 ◽  
Author(s):  
Y. W. Chang ◽  
S. W. Liang ◽  
Chih Chen

Sign in / Sign up

Export Citation Format

Share Document