Numerical Simulations of Electromigration and Stress Migration Driven Void Propagation in Pb Free Solder Interconnects

Author(s):  
Subramanya Sadasiva ◽  
Ganesh Subbarayan ◽  
Lei Jiang ◽  
Daniel Pantuso

Increasing miniaturization has led a significant increase in the current densities seen in flip-chip solder joints. This has made the study of failure in solder joints by void propagation due to electromigration and stress migration more important. In this study, we develop a phase field model for the motion of voids through a flip chip solder interconnect. We derive equations of motion for the void accounting for energetic contributions from the active factors of surface energy, stress and electric potential, taking into account both surface diffusion and transfer of the material through the bulk of the material. We describe the implementation of this model using finite elements, coupled with a commercial finite element solver to solve for the fields driving the void motion.

Author(s):  
Jordan C. Roberts ◽  
Mohammad Motalab ◽  
Safina Hussain ◽  
Jeffrey C. Suhling ◽  
Richard C. Jaeger ◽  
...  

Microprocessor packaging in modern workstations and servers often consists of one or more large flip chip die that are mounted to a high performance ceramic chip carrier. The final assembly configuration features a complex stack up of flip chip area array solder interconnects, underfill, ceramic substrate, lid, heat sink, thermal interface materials, second level CBGA solder joints, organic PCB, etc., so that a very complicated set of loads is transmitted to the microprocessor chip. Several trends in the evolution of this packaging architecture have exacerbated die stress levels including the transition to larger die, high CTE ceramic substrates, lead free solder joints, higher levels of power generation, and larger heat sinks with increased clamping forces. Die stress effects are of concern due to several reasons including degradation of silicon device performance (mobility/speed), damage that can occur to the copper/low-k top level interconnect layers, and potential mechanical failure of the silicon in extreme cases. In this work, we have used test chips containing piezoresistive sensors to measure the buildup of mechanical stresses in a microprocessor die after various steps of the CBGA assembly process, as well as due to heat sink clamping. The developed normal stresses are compressive (triaxial compression) across the die surface, with significant in-plane and out-of-plane (interfacial) shear stresses also present at the die corners. The compressive stresses have been found to increase with each assembly step (flip chip solder joint reflow, underfill dispense and cure, lid attachment, CBGA assembly to PCB, and heat sink clamping). Levels exceeding 500 MPa have been observed for extremely high heat sink clamping forces. The utilized (111) silicon test chips were able to measure the complete three-dimensional stress state (all 6 stress components) at each sensor site being monitored by the data acquisition hardware. The test chips had dimensions of 20 × 20 mm, and 3600 lead free solder interconnects (full area array) were used to connect the chips to the high CTE ceramic chip carriers. Before packaging, the sensor resistances were measured by directly probing the individual test chip wafers. The chips were then diced, reflowed to the ceramic substrate, and then underfilled and cured. A metallic lid and second level solder balls were attached to complete the flip chip ceramic BGA components. After every packaging step (flip chip solder ball reflow, underfill dispense and cure, lid attachment and adhesive cure), the sensor resistances were re-measured, so that the die stresses induced by each assembly operation could be characterized. Finally, CBGAs with the stress sensing chips were soldered to organic PCB test boards. A simulated heat sink loading was then applied, and the stresses were measured as a function of the clamping force. The heat sink clamping pressure distribution was monitored using in-situ resistive sensors in the TIM2 position between the lid and heat sink. The measured stress changes due to heat sink clamping where correlated with finite element simulations. With suitable detail in the models, excellent correlation has been obtained.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Subramanya Sadasiva ◽  
Ganesh Subbarayan ◽  
Lei Jiang ◽  
Daniel Pantuso

Understanding the effect of high current density on void formation and growth and relating the size of the void to the resulting electrical/mechanical failure is a critical need at the present time to ensure reliable functioning of flip-chip packages. In general, toward this end, the modeling and simulation of geometrical evolution of current induced voids have been relatively few. Simulations considering the coupled effects of mass transport through mechanisms of surface and bulk diffusion under the influence of electrical, thermal, and stress fields in solder joints leading to eventual electromigration failure do not appear to be common. In this study, we develop a phase field model for the evolution of voids under electrical, thermal, and stress fields in a flip-chip solder interconnect. We derive the equations of motion for the void accounting for energetic contributions from the active factors of surface energy, stress, and electric potential, considering both surface diffusion and transfer of the material through the bulk of the material. We describe the implementation of this model using a finite element code written in the PYTHON language, coupled with a commercial finite element solver from which we obtain the electrical, thermal, and stress fields driving the void motion. We demonstrate the implemented methodology through simulations of void evolution in flip-chip solder joints under the effects of mechanical/electrical fields and surface/bulk diffusion.


2004 ◽  
Vol 127 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Daijiao Wang ◽  
Ronald L. Panton

Understanding the formation of voids in solder joints is important for predicting the long-term reliability of solder interconnects. This paper reports experimental research on the formation of void bubbles within molten solder bumps in flip-chip connections. For flip-chip-soldered electronic components, which have small solder volume, voids can be more detrimental to reliability. A previous theory based on thermocapillary flow reveals that the direction of heating influences void formation. Using different heating profiles, 480 solder joints of flip-chip assemblies were processed. A high-lead 90Pb∕8Sn∕2Ag solder was employed in the experiments. The solder samples were microsectioned to determine the actual size or diameter of the voids. A database on sizes and locations of voids was then constructed. More defective bumps, 80%, and higher void volume were found when the solder was melted from top (flip-chip side) to bottom (test board side). The observation on cases with melting direction from bottom to top had 40% defective bumps. The results show that a single big void is near the solder bump center with a few small voids near the edge. This supports the numerical study based on the thermocapillary theory. When the melting direction was reversed, many small voids appear near the edge. Big and middle-size voids tend to stay in the middle and outer regions from top towards middle layer of the bump. This experimental finding does not completely agree with the interpretation on the formation of voids by thermocapillary theory, however, the results do show that heat flux direction plays significant role in the formation and distribution of void bubbles in molten solder.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002481-002506
Author(s):  
Mathias Nowottnick ◽  
Andreas Fix

The electromigration effects in chip metallization and wire bonds are well known and detailed investigated. Current density could be extremely high because of the small size of the cross sectional area of conductors. This can cause a migration of metal atoms toward the electrical field, so current densities up to 106 A/cm2 are possible. In comparison with chip structures are the usual solder joints of flip chips relatively thick. But the homologue temperature of solder alloys, typically based on tin, is also much higher than for gold or aluminum wires. For instance a SAC solder alloy is naturally preheated up to 0.6 homologue temperature, for high temperature application with 125 °C operating temperature even more than 0.8. This means, that atoms are very agile and a directed movement needs only lower field strength. Additionally is the specific resistance of solder alloys tenfold higher than for aluminum, copper or silver. So is the self-heating of solder joints not negligible. This contribution shows the test results of flip-chip assemblies, loaded with different current densities and stored at 125 °C ambient temperature. At the end of life of a significant number of test chips, a metallographic analysis shows the causing failure effects and weak spots of assemblies. Accompanying simulations help to explain the interaction between current density and migration effects.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000787-000792
Author(s):  
E. Misra ◽  
T. Wassick ◽  
I. Melville ◽  
K. Tunga ◽  
D. Questad ◽  
...  

The introduction of low-k & ultra-low-k dielectrics, lead-free (Pb-free) solder interconnects or C4's, and organic flip-chip laminates for integrated circuits have led to some major reliability challenges for the semiconductor industry. These include C4 electromigration (EM) and mechanical failures induced with-in the Si chip due to chip-package interactions (CPI). In 32nm technology, certain novel design changes were evaluated in the last Cu wiring level and the Far Back End of Line levels (FBEOL) to strategically re-distribute the current more uniformly through the Pb-free C4 bumps and therefore improve the C4 EM capabilities of the technology. FBEOL process integration changes, such as increasing the thickness of the hard dielectric (SiNx & SiOx) and reducing the final via diameter, were also evaluated for reducing the mechanical stresses in the weaker BEOL levels and mitigating potential risks for mechanical failures within the Si chip. The supporting white-bump, C4 EM and electrical/mechanical modeling data that demonstrates the benefits of the design and integration changes will be discussed in detail in the paper. Some of the key processing and integration challenges observed due to the design and process updates and the corresponding mitigation steps taken will also be discussed.


Author(s):  
Hua Lu ◽  
Chris Bailey

Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.


2002 ◽  
Vol 31 (11) ◽  
pp. 1256-1263 ◽  
Author(s):  
Fan Zhang ◽  
Ming Li ◽  
Bavani Balakrisnan ◽  
William T. Chen

2006 ◽  
Vol 129 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Yi-Shao Lai ◽  
Chiu-Wen Lee ◽  
Chin-Li Kao

The high-temperature operation life test (HTOL) was conducted in this paper to study electromigration phenomena of solder interconnects in a flip-chip package assembly. We examined the fatigue reliability and morphological patterns of three solder compositions: Sn-4Ag-0.5Cu, Sn-3.5Ag-1Cu, and Sn-3Ag-1.5Cu, subjected to two test conditions consisting of different average current densities and ambient temperatures (5kA∕cm2 at 150°C and 20kA∕cm2 at 30°C). It is interesting to realize that as the Cu weight content of the solder composition increases, the fatigue life increases under 5kA∕cm2 at 150°C but decreases under 20kA∕cm2 at 30°C. Observed electromigration morphologies along with computed current density and temperature distributions on solder interconnects from the electrothermal coupling analysis were examined, correlated, and discussed.


2004 ◽  
Vol 44 (12) ◽  
pp. 1947-1955 ◽  
Author(s):  
D.G. Yang ◽  
J.S. Liang ◽  
Q.Y. Li ◽  
L.J. Ernst ◽  
G.Q. Zhang

Sign in / Sign up

Export Citation Format

Share Document