Comparative Study of the Valence Band Density of States of Amorphous Ge and

Author(s):  
B. Kramer ◽  
J. Treusch
2021 ◽  
Author(s):  
Bo Feng

Abstract The effect of Ti doped at Cu site on the thermoelectric properties of BiCuSeO was studied by experimental method and first principles calculation. The results show that Ti doping can cause the lattice contraction and decrease the lattice constant. Ti doping can increase the band gap and lengthen the Cu/Ti-Se bond, resulting in the decrease of carrier concentration. Ti doping can reduce the effective mass and the Bi-Se bond length, correspondingly improve the carrier mobility. Ti doping can decrease the density of states of Cu-3d and Se-4p orbitals at the top of valence band, but Ti-4p orbitals can obviously increase the density of states at the top of valence band and finally increase the electrical conductivity in the whole temperature range. With the decrease of effective mass, Ti doping would reduce the Seebeck coefficient, but the gain effect caused by the increase of electrical conductivity is more than the benefit reduction effect caused by the decrease of Seebeck coefficient, and the power factor shows an upward trend. Ti doping can reduce Young's modulus, lead to the increase of defect scattering and strain field, correspondingly reduce the lattice thermal conductivity and total thermal conductivity. It is greatly increased for the ZT values in the middle and high temperature range, with the highest value of 1.04 at 873 K.


1998 ◽  
Vol 21 (3) ◽  
pp. 217-219 ◽  
Author(s):  
M. A. Grado-Caffaro ◽  
M. Grado-Caffaro

A formulation for the energy-averaged local valence band density of states of amorphous silicon carbide is derived. To this end,sp3-type hybrid orbitals are employed.


2020 ◽  
pp. 2050048
Author(s):  
A. MOKADEM ◽  
M. BOUSLAMA ◽  
B. KHAROUBI ◽  
A. OUERDANE ◽  
R. KHENATA ◽  
...  

We investigate the growth performance of tin oxide on the Si substrate, achieved by spray pyrolysis using the sensitive analysis techniques X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). These complementary techniques confirm the growth of homogeneous SnO2 thin films. We also study the electronic distribution of the valence band of SnO2 theoretically using density functional theory (DFT). The chemical and physical properties of the material depend on the electron structure varying as a function of energy. The density of states (DOS) is calculated using the modified Becke–Johnson-Generalized Gradient Approximation (mBJ-GGA) in order to identify the electronic orbitals and the importance of their contribution to the electronic structure of the valence band. Furthermore, we use the experimental technique UV Photoelectron Spectroscopy (UPS) for studying the electronic distribution within the valence band and for validating the theoretical results of the density of states of SnO2/Si.


1992 ◽  
Vol 46 (15) ◽  
pp. 9724-9731 ◽  
Author(s):  
K. W. Wulser ◽  
B. P. Hearty ◽  
M. A. Langell

2009 ◽  
Vol 23 (19) ◽  
pp. 2339-2352 ◽  
Author(s):  
LI BIN SHI ◽  
SHUANG CHENG ◽  
RONG BING LI ◽  
LI KANG ◽  
JIAN WEI JIN ◽  
...  

Density of states and band structure of wurtzite ZnO are calculated by the CASTEP program based on density functional theory and plane-wave pseudopotential method. The calculations are carried out in axial and unaxial strains, respectively. The results of density of states in different strains show that the bottom of the conduction band is always dominated by Zn 4s, and the top of valence band is always dominated by O 2p. The variation of the band gap calculated from band structure is also discussed. In addition, p-d repulsion is used in investigating the variation of the top of the valence band in different strains and the results can be verified by electron density difference.


2005 ◽  
Vol 864 ◽  
Author(s):  
Salameh Ahmad ◽  
Daniel Bilc ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

AbstractAb initioelectronics structure calculations have been carried out in a series of RPb2n-1Te2n, n=16, compounds to understand the nature of “defect” states introduced by R where R = vacancy, monovalent Na, K, Rb, Cs, Ag atoms and divalent Cd atoms. We find that the density of states (DOS) near the top of the valence band and the bottom of the conduction band get significantly modified. The Na atom seems to perturb this region least (ideal acceptor in PbTe) and the other monovalent atoms enhance the DOS near the top of the valence band. Cd is an interesting case, since it introduces a strong resonance state near the bottom of the conduction band.


Sign in / Sign up

Export Citation Format

Share Document