Initiation of Submarine Granular Avalanches: Role of the Initial Volume Fraction

2008 ◽  
Author(s):  
Mickaël Pailha ◽  
Olivier Pouliquen ◽  
Maxime Nicolas ◽  
Albert Co ◽  
Gary L. Leal ◽  
...  
2011 ◽  
Vol 23 (7) ◽  
pp. 073301 ◽  
Author(s):  
L. Rondon ◽  
O. Pouliquen ◽  
P. Aussillous

2009 ◽  
Vol 633 ◽  
pp. 115-135 ◽  
Author(s):  
MICKAËL PAILHA ◽  
OLIVIER POULIQUEN

A theoretical model based on a depth-averaged version of two-phase flow equations is developed to describe the initiation of underwater granular avalanches. The rheology of the granular phase is based on a shear-rate-dependent critical state theory, which combines a critical state theory proposed by Roux & Radjai (1998), and a rheological model recently proposed for immersed granular flows. Using those phenomenological constitutive equations, the model is able to describe both the dilatancy effects experienced by the granular skeleton during the initial deformations and the rheology of wet granular media when the flow is fully developed. Numerical solutions of the two-phase flow model are computed in the case of a uniform layer of granular material fully immersed in a liquid and suddenly inclined from horizontal. The predictions are quantitatively compared with experiments by Pailha, Nicolas & Pouliquen (2008), who have studied the role of the initial volume fraction on the dynamics of underwater granular avalanches. Once the rheology is calibrated using steady-state regimes, the model correctly predicts the complex transient dynamics observed in the experiments and the crucial role of the initial volume fraction. Quantitative predictions are obtained for the triggering time of the avalanche, for the acceleration of the layer and for the pore pressure.


2008 ◽  
Vol 20 (11) ◽  
pp. 111701 ◽  
Author(s):  
M. Pailha ◽  
M. Nicolas ◽  
O. Pouliquen

1994 ◽  
Vol 370 ◽  
Author(s):  
Kelly T. Miller ◽  
Wei Shi ◽  
Leslie J. Struble ◽  
Charles F. Zukoski

AbstractCompressive yield stresses have been measured for pastes (0.35 ≤ w/c ≤ 0.50) of portland cement, calcium aluminate cement, and weakly and strongly flocculated alumina (Φ0 = 0.20) using the centrifuge sediment height technique. Equilibrium sediment heights are reached quickly, allowing all measurements to be taken during the cement's induction period. The compressive behavior showed little dependence on the compressive history. Compressive yield stress was, however, dependent upon initial volume fraction, decreasing as the initial volume fraction increases. This behavior was observed in both the cements and alumina suspensions, implying that strong dependencies on initial structure may be a general property of the compressive behavior of flocculated suspensions.


2007 ◽  
Vol 340-341 ◽  
pp. 1025-1030
Author(s):  
Isamu Riku ◽  
Koji Mimura

In this study, we employ the two-dimensional homogenization model based on molecular chain network theory to investigate the micro- to macroscopic mechanical behavior of plastic foam under macroscopic uniform compression. A parametric study is performed to quantify the effect of a characteristic value of matrix, distribution and initial volume fraction of voids, and the macroscopic triaxiality of loading condition on the deformation behavior of the foam. The results suggest that the onset of localized shear band at the ligament between voids together with the microscopic buckling of the ligament leads to the macroscopic yield of the foam. The initial modulus and the macroscopic yield stress of the foam have no dependence on the characteristic value of matrix. Furthermore, as the microscopic buckling of the ligament is promoted in case of high initial volume fraction of voids and high triaxiality loading condition, the macroscopic yield point appears at early deformation stage. After the macroscopic yield, macroscopic strain hardening appears in the macroscopic response and a remarkable strain hardening is shown in case of high initial volume fraction of voids and high triaxiality loading condition due to the considerable increase of the density of the foam in these cases.


Nukleonika ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 29-33
Author(s):  
Mariusz Hasiak

Abstract The microstructure and magnetic properties of nanocomposite hard magnetic Nd-Fe-B-(Re, Ti) materials with different Nd and Fe contents are studied. The role of Re and Ti addition in phase composition and volume fraction of the Nd-Fe-B phase is determined. All samples are annealed at the same temperature of 993 K for 10 min. Mössbauer spectroscopy shows that the addition of 4 at.% of Re to the Nd8Fe78B14 alloy leads to creation of an ineligible amount of the magnetically hard Nd2Fe14B phase. Moreover, the microstructure and magnetic characteristics recorded in a wide range of temperatures for the Nd8Fe79−xB13Mx (x = 4; M = Re or Ti) alloys are also analyzed.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550049 ◽  
Author(s):  
Vitaly Yu. Topolov ◽  
Christopher R. Bowen ◽  
Paolo Bisegna ◽  
Anatoly E. Panich

The influence of the aspect ratio and volume fraction of ferroelectric ceramic inclusions in a 0–3 matrix on the hydrostatic parameters of a three-component 1–3-type composite is studied to demonstrate the important role of the elastic properties of the two-component matrix on the composite performance. Differences in the elastic properties of the 0–3 matrix and single-crystal rods lead to a considerable dependence of the hydrostatic response of the composite on the anisotropy of the matrix elastic properties. The performance of a 1–0–3 0.92 Pb ( Zn 1/3 Nb 2/3) O 3–0.08 PbTiO 3 SC/modified PbTiO 3 ceramic/polyurethane composite suggests that this composite system is of interest for hydroacoustic applications due to its high hydrostatic piezoelectric coefficients [Formula: see text] and [Formula: see text], squared figure of merit [Formula: see text], and electromechanical coupling factor [Formula: see text].


Author(s):  
Kris Noel Dahl ◽  
Elizabeth A. Booth-Gauthier ◽  
Alexandre J. S. Ribeiro ◽  
Zhixia Zhong

Mechanical force is found to be increasingly important during development and for proper homeostatic maintenance of cells and tissues. The nucleus occupies a large volume fraction of the cell and is interconnected with the cytoskeleton. Here, to determine the direct role of the nucleus itself in converting forces to changes in gene expression, also known as, mechanotransduction, we examine changes in nuclear mechanics and gene reorganization associated with cell fate and with extracellular force. We measure mechanics of nuclei in many model cell systems using micropipette aspiration to show changes in nuclear mechanics. In intact cells we characterize the rheological changes induced in the genome organization with live cell imaging and particle tracking, and we suggest how these changes relate to gene expression.


Sign in / Sign up

Export Citation Format

Share Document