Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle

2008 ◽  
Vol 93 (15) ◽  
pp. 153901 ◽  
Author(s):  
S. C. Irvine ◽  
D. M. Paganin ◽  
S. Dubsky ◽  
R. A. Lewis ◽  
A. Fouras
2016 ◽  
Vol 72 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Aike Ruhlandt ◽  
Tim Salditt

This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality.


2017 ◽  
Vol 4 ◽  
Author(s):  
Emely L. Bortel ◽  
Max Langer ◽  
Alexander Rack ◽  
Jean-Baptiste Forien ◽  
Georg N. Duda ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Longlong Wu ◽  
Shinjae Yoo ◽  
Ana F. Suzana ◽  
Tadesse A. Assefa ◽  
Jiecheng Diao ◽  
...  

AbstractAs a critical component of coherent X-ray diffraction imaging (CDI), phase retrieval has been extensively applied in X-ray structural science to recover the 3D morphological information inside measured particles. Despite meeting all the oversampling requirements of Sayre and Shannon, current phase retrieval approaches still have trouble achieving a unique inversion of experimental data in the presence of noise. Here, we propose to overcome this limitation by incorporating a 3D Machine Learning (ML) model combining (optional) supervised learning with transfer learning. The trained ML model can rapidly provide an immediate result with high accuracy which could benefit real-time experiments, and the predicted result can be further refined with transfer learning. More significantly, the proposed ML model can be used without any prior training to learn the missing phases of an image based on minimization of an appropriate ‘loss function’ alone. We demonstrate significantly improved performance with experimental Bragg CDI data over traditional iterative phase retrieval algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shengkun Yao ◽  
Yunbing Zong ◽  
Jiadong Fan ◽  
Zhibin Sun ◽  
Huaidong Jiang

X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.


2020 ◽  
Author(s):  
M. Reichardt ◽  
C. Neuhaus ◽  
J-D. Nicolas ◽  
M. Bernhardt ◽  
K. Toischer ◽  
...  

ABSTRACTWe present a multi-scale imaging approach to characterize the structure of isolated adult murine cardiomyocytes based on a combination of full-field three-dimensional (3d) coherent x-ray imaging and scanning x-ray diffraction. Using these modalities, we probe the structure from the molecular to the cellular scale. Holographic projection images on freeze-dried cells have been recorded using highly coherent and divergent x-ray waveguide radiation. Phase retrieval and tomographic reconstruction then yield the 3d electron density distribution with a voxel size below 50 nm. In the reconstruction volume, myofibrils, sarcomeric organisation and mitochondria can be visualized and quantified within a single cell without sectioning. Next, we use micro-focusing optics by compound refractive lenses to probe the diffraction signal of the acto-myosin lattice. Comparison between recordings of chemically fixed and untreated, living cells indicate that the characteristic lattice distances shrink by approximately 10% upon fixation.SIGNIFICANCEDiffraction with synchrotron radiation has played an important role to decipher the molecular structure underlying force generation in muscle. In this work, the diffraction signal of the actomyosin contractile unit has for the first time been recorded from living cardiomyocytes, bringing muscle diffraction to the scale of single cells. In addition to scanning diffraction, we use coherent optics at the same synchrotron endstation to perform holographic imaging and tomography on a single cardiomyocyte. By this hard x-ray microscopy modality, we extend the length scales covered by scanning diffraction and reconstruct the electron density of an entire freeze-dried cardiomyocyte, visualizing the 3d architecture of myofibrils, sarcomers, and mitochondria with a voxel size below 50 nm.


IUCrJ ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 531-541 ◽  
Author(s):  
Ida V. Lundholm ◽  
Jonas A. Sellberg ◽  
Tomas Ekeberg ◽  
Max F. Hantke ◽  
Kenta Okamoto ◽  
...  

Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.


2017 ◽  
Vol 73 (4) ◽  
pp. 282-292 ◽  
Author(s):  
Martin Krenkel ◽  
Mareike Toepperwien ◽  
Frauke Alves ◽  
Tim Salditt

X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining and labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.


2019 ◽  
Vol 26 (3) ◽  
pp. 825-838 ◽  
Author(s):  
Darren A. Thompson ◽  
Yakov I. Nesterets ◽  
Konstantin M. Pavlov ◽  
Timur E. Gureyev

The following article describes a method for 3D reconstruction of multi-material objects based on propagation-based X-ray phase-contrast tomography (PB-CT) with phase retrieval using the homogeneous form of the transport of intensity equation (TIE-Hom). Unlike conventional PB-CT algorithms that perform phase retrieval of individual projections, the described post-reconstruction phase-retrieval method is applied in 3D to a localized region of the CT-reconstructed volume. This work demonstrates, via numerical simulations, the accuracy and noise characteristics of the method under a variety of experimental conditions, comparing it with both conventional absorption tomography and 2D TIE-Hom phase retrieval applied to projection images. The results indicate that the 3D post-reconstruction method generally achieves a modest improvement in noise suppression over existing PB-CT methods. It is also shown that potentially large computational gains over projection-based phase retrieval for multi-material samples are possible. In particular, constraining phase retrieval to a localized 3D region of interest reduces the overall computational cost and eliminates the need for multiple CT reconstructions and global 2D phase retrieval operations for each material within the sample.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document