Transistor threshold voltage modulation by Dy2O3 rare-earth oxide capping: The role of bulk dielectrics charge

2008 ◽  
Vol 93 (26) ◽  
pp. 263502 ◽  
Author(s):  
H. Y. Yu ◽  
S. Z. Chang ◽  
M. Aoulaiche ◽  
X. P. Wang ◽  
C. Adelmann ◽  
...  
Open Ceramics ◽  
2020 ◽  
Vol 2 ◽  
pp. 100018
Author(s):  
T.S.R.C. Murthy ◽  
Lucas Reeman ◽  
Ji Zou ◽  
Vinothini Venkatachalam ◽  
Ben Baker ◽  
...  

2008 ◽  
Vol 92 (11) ◽  
pp. 112912 ◽  
Author(s):  
James M. LeBeau ◽  
Jesse S. Jur ◽  
Daniel J. Lichtenwalner ◽  
H. Spalding Craft ◽  
Jon-Paul Maria ◽  
...  

2010 ◽  
Vol 434-435 ◽  
pp. 586-589
Author(s):  
Min Zheng ◽  
Ding Fan ◽  
Jian Bin Zhang ◽  
Xiu Kun Li

The calcium phosphate bioceramic coating was fabricated on titanium alloy (Ti-6Al-4V) substrate by a 5kW continuous transverse flow CO2 laser. Due to the peculiar role of rare earth oxide in laser cladding, the effect of ceria additive on the microstructure and properties of laser-cladded bioceramic coating was investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), microhardness and corrosion resistance testing. The results indicate that the appearance of rare earth oxide ceria in the precursor powders has an impact on the microstructure and properties of the laser-cladded bioceramic coating. Calcium phosphate bioceramic such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are synthesized on the top surface of laser-cladded specimens. And the addition of rare earth oxide ceria in pre-placed powders has an influence on the formation of calcium phosphate bioceramic phases. Furthermore, it reveals that the laser-cladded bioceramic coating of ceria additive in pre-placed powders has more favorable microhardness and corrosion resistance compared with the coating without rare earth oxide.


2007 ◽  
Vol 43 (2) ◽  
pp. 530-535 ◽  
Author(s):  
Lalgudi Venkataraman Ramanathan ◽  
Marina F. Pillis ◽  
Stela Maria C. Fernandes

2011 ◽  
Vol 216 ◽  
pp. 563-567
Author(s):  
Tian Guo Wang ◽  
Qun Qin ◽  
Dong Jian Zhou

TiO2-based capacitor-varistor ceramics doped with Er2O3 were prepared and the microstructures and nonlinear electrical properties were investigated. The results show that there exist second phase Er2TiO3 on the surface of TiO2 grains. The grain size was found to decrease with increasing Er2O3 content. The addition of rare earth oxide Er2O3 leads to increase the nonlinear coefficient and the breakdown voltage. It was found that the nonlinear coefficient presents a peak of α = 4.5 for the sample doped with 1.1 mol% Er2O3, which isconsistent with the highest grain boundary in the composition. In order to illustrate the role of grain boundary barriers for TiO2-Ta2O5-Er2O3 varistors, a grian boundary defect barrier model was introduced.


2019 ◽  
Author(s):  
Kylie E. Dupuis ◽  
◽  
Owen A. Anfinson ◽  
Laura Waters ◽  
Holli M. Frey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document