Electron transport and charge induction in cadmium zinc telluride detectors with space charge build up under intense x-ray irradiation

2010 ◽  
Vol 107 (11) ◽  
pp. 114512 ◽  
Author(s):  
Derek S. Bale ◽  
Csaba Szeles
2020 ◽  
Vol 27 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Leonardo Abbene ◽  
Fabio Principato ◽  
Gaetano Gerardi ◽  
Antonino Buttacavoli ◽  
Donato Cascio ◽  
...  

In this work, the spectroscopic performances of new cadmium–zinc–telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm−1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation of the charge losses at the inter-pixel gap region. High-rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 2 × 106 photons mm−2 s−1. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.


2015 ◽  
Vol 106 (6) ◽  
pp. 063507
Author(s):  
A. Lohstroh ◽  
I. Della Rocca ◽  
S. Parsons ◽  
A. Langley ◽  
C. Shenton-Taylor ◽  
...  

1999 ◽  
Author(s):  
B. A. Brunett ◽  
J. C. Lund ◽  
J. M. Van Scyoc ◽  
N. R. Hilton ◽  
E. Y. Lee ◽  
...  

2018 ◽  
Vol 52 (8) ◽  
pp. 085106 ◽  
Author(s):  
M C Veale ◽  
C Angelsen ◽  
P Booker ◽  
J Coughlan ◽  
M J French ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Utpal N. Roy ◽  
Giuseppe S. Camarda ◽  
Yonggang Cui ◽  
Ge Yang ◽  
Ralph B. James

AbstractBoth material quality and detector performance have been steadily improving over the past few years for the leading room temperature radiation detector material cadmium-zinc-telluride (CdZnTe). However, although tremendous progress being made, CdZnTe still suffers from high concentrations of performance-limiting defects, such as Te inclusions, networks of sub-grain boundaries and compositional inhomogeneity due to the higher segregation coefficient of Zn. Adding as low as 2% (atomic) Se into CdZnTe matrix was found to successfully mitigate many performance-limiting defects and provide improved compositional homogeneity. Here we report record-high performance of Virtual Frisch Grid (VFG) detector fabricated from as-grown Cd0.9Zn0.1Te0.98Se0.02 ingot grown by the Traveling Heater Method (THM). Benefiting from superior material quality, we achieved superb energy resolution of 0.77% at 662 keV (as-measured without charge-loss correction algorithms) registered at room temperature. The absence of residual thermal stress in the detector was revealed from white beam X-ray topographic images, which was also confirmed by Infra-Red (IR) transmission imaging under cross polarizers. Furthermore, neither sub-grain boundaries nor their networks were observed from the X-ray topographic image. However, large concentrations of extrinsic impurities were revealed in as-grown materials, suggesting a high likelihood for further reduction in the energy resolution after improved purification of the starting material.


2009 ◽  
Vol 1164 ◽  
Author(s):  
Ge Yang ◽  
Aleksey E Bolotnik ◽  
Giuseppe Camarda ◽  
Yonggang Cui ◽  
Anwar Hossain ◽  
...  

AbstractLarge-volume cadmium zinc telluride (CZT) radiation detectors would greatly improve radiation detection capabilities and, therefore, attract extensive scientific and commercial interests. CZT crystals with volumes as large as hundreds of centimeters can be achieved today due to improvements in the crystal growth technology. However, the poor performance of large-volume CZT detectors is still a challenging problem affecting the commercialization of CZT detectors and imaging arrays. We have employed Pockels effect measurements and synchrotron X-ray mapping techniques to investigate the performance-limiting factors for large-volume CZT detectors. Experimental results with the above characterization methods reveal the non-uniform distribution of internal electric field of large-volume CZT detectors, which help us to better understand the responsible mechanism for the insufficient carrier collection in large-volume CZT detectors.


Sign in / Sign up

Export Citation Format

Share Document