Plasma‐ and gas‐surface interactions during the chemical vapor deposition of tungsten from H2/WF6

1988 ◽  
Vol 64 (9) ◽  
pp. 4696-4703 ◽  
Author(s):  
W. M. Green ◽  
D. W. Hess ◽  
W. G. Oldham
2006 ◽  
Vol 959 ◽  
Author(s):  
Ilyes Zahi ◽  
Hugues Vergnes ◽  
Brigitte Caussat ◽  
Alain Esteve ◽  
Mehdi Djafari Rouhani ◽  
...  

ABSTRACTWe present first results combining models at continuum and atomistic (DFT) levels to improve understanding of key mechanisms involved in silicon nanodots (NDs) synthesis on SiO2 by Low Pressure Chemical Vapor Deposition (LPCVD) from silane SiH4. In particular, by simulating an industrial LPCVD reactor using the CFD code Fluent, we find that the deposition time could be increased and then the reproducibility and uniformity of NDs deposition could be improved when highly diluting silane in a carrier gas. A consequence of this high dilution seems to be that the contribution to deposition of unsaturated species such as silylene SiH2 highly increases. This result is important since our first DFT calculations have shown that silicon chemisorption on silanol Si-OH or siloxane Si-O-Si bonds present on SiO2 substrates could only proceed from silylene (and probably from other unsaturated species). The silane saturated molecule could only contribute to NDs growth, i.e. silicon chemisorption on already deposited silicon bonds. Increasing silylene contribution to deposition in highly diluting silane could then also exalt silicon nucleation on SiO2 substrates and then increase NDs density.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-885-Pr3-892 ◽  
Author(s):  
N. Popovska ◽  
S. Schmidt ◽  
E. Edelmann ◽  
V. K. Wunder ◽  
H. Gerhard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document