scholarly journals Pulsed plasma initiated chemical vapor deposition (PiCVD) of polymer layers − A kinetic model for the description of gas phase to surface interactions in pulsed plasma discharges

2018 ◽  
Vol 15 (12) ◽  
pp. 1800121 ◽  
Author(s):  
François Loyer ◽  
Simon Bulou ◽  
Patrick Choquet ◽  
Nicolas D. Boscher
2011 ◽  
Vol 519 (14) ◽  
pp. 4479-4482 ◽  
Author(s):  
D.A. Spee ◽  
R. Bakker ◽  
C.H.M. van der Werf ◽  
M.J. van Steenbergen ◽  
J.K. Rath ◽  
...  

1988 ◽  
Vol 131 ◽  
Author(s):  
Triantafillos J. Mountziaris ◽  
Klavs F. Jensen

ABSTRACTA kinetic model for metalorganic chemical vapor deposition (MOCVD) of GaAs from trimethylgallium and arsine is presented. The proposed mechanism includes 15 gas-phase species, 17 gas-phase reactions, 9 surface species and 29 surface reactions. The surface reactions take into account different crystallographic orientations of the GaAs substrate. Sensitivity analysis and existing experimental observations have been used to develop the reduced mechanism from the large number of reactions that might in principle occur. Rate constants are estimated by using thermochemical methods and reported experimental data. The kinetic mechanism is combined with a two-dimensional transport model of a hot-wall tubular reactor used in experimental studies. Model predictions of gas-phase composition and GaAs growth rates show good agreement with published experimental studies. In addition, the model predicts reported trends in carbon incorporation.


Carbon ◽  
2014 ◽  
Vol 71 ◽  
pp. 345
Author(s):  
Wei Xu ◽  
Zhong-wei Zhang ◽  
Rui-cheng Bai ◽  
Ai-jun Li ◽  
Jun-shan Wang ◽  
...  

1994 ◽  
Vol 363 ◽  
Author(s):  
G. Gorsuch ◽  
Y. Jin ◽  
N. K. Ingle ◽  
T. J. Mountziarisi ◽  
W.-Y. Yu ◽  
...  

AbstractA detailed kinetic model of diamond-like film growth from methane diluted in hydrogen using low-pressure, filament-assisted chemical vapor deposition (FACVD) has been developed. The model includes both gas-phase and surface reactions. The surface kinetics include adsorption of CH3· and H·, abstraction reactions by gas-phase radicals, desorption, and two pathways for diamond (sp3) and graphitic carbon (sp2) growth. It is postulated that adsorbed CH2· species are the major film precursors. The proposed kinetic model was incorporated into a transport model describing flow, heat and mass transfer in stagnation flow FACVD reactors. Diamond-like films were deposited on preseeded Si substrates in such a reactor at a pressure of 26 Torr, inlet gas composition ranging from 0.5% to 1.5% methane in hydrogen and substrate temperatures ranging from 600 to 950°C. The best films were obtained at low methane concentrations and substrate temperature of 700°C. The films were characterized using Scanning Electron Microscopy (SEM) and Raman spectroscopy. Observations from our experiments and growth rate data from similar experiments reported in the literature [1] were used to estimate unknown kinetic parameters of surface reactions. The proposed model predicts observed film growth rates, compositions and stable species distributions in the gas phase. It is the first complete model of FACVD that includes gas-phase and surface kinetics coupled with transport phenomena.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Wiebke Reichstein ◽  
Levke Sommer ◽  
Salih Veziroglu ◽  
Selin Sayin ◽  
Stefan Schröder ◽  
...  

The current study aimed to describe the fabrication of a composite patch by incorporating marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor deposition (iCVD) to improve its wettability and overall biocompatibility. The iCVD functionalized MAP–PLA composite patch showed superior cell interaction of human osteoblasts. Following the surface functionalization by p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch was achieved without tailoring any morphological and structural properties. Moreover, the iCVD modified composite patch exhibited ideal cell adhesion for human osteoblasts, thus making the proposed patch suitable for potential biomedical applications including bone tissue engineering, especially in the fields of dentistry and orthopedy.


Sign in / Sign up

Export Citation Format

Share Document