Numerical Modeling of Hot Press Forming Process of Boron Steel Tube

Author(s):  
Oh Suk Seo ◽  
Suk Jin Yoon ◽  
Chang Hee Suh ◽  
Heon Young Kim ◽  
F. Barlat ◽  
...  
Author(s):  
Yang Li ◽  
Yong-Phil Jeon ◽  
Chung-Gil Kang

Bending behavior occurs in the hot press forming process, resulting in many cases of failure during forming. To address the problem of cracking and improve the formability and mechanical properties of boron steel sheets in the bending process, an experiment has been carried out by using a spring compound bending die. Also, a comparison has been made between the traditional U-bending die and the spring compound bending die with regard to formability. The influence of the parameters for hot press forming such as the heating temperature, punch speed, and die radii on the mechanical properties and microstructure was analyzed by tension testing and metallographic observations.


2011 ◽  
Vol 264-265 ◽  
pp. 48-53
Author(s):  
S.H. An ◽  
Ki Young Kwon ◽  
Chung Gil Kang

When cooling a boron sheet that has been heated to over 900 °C by hot press forming (HPF) process, the microstructure obtains a martensitic structure by controlling the cooling rate. HPF has advantages such as improvement in formability and material properties, and minimal springback of the formed material. The facts influenced by the cooling rate are determined by the heat transfer characteristics between the heated materials and the dies. In this study, controlling of the cooling rate is addressed by controlling the heat transfer coefficient of the material during the pressing process. This study demonstrates the material properties and microstructures of the formed material during the HPF process wherein cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions: the cooling rates, which is regarded as the most important process parameter.


2019 ◽  
Vol 13 (2) ◽  
pp. 5137-5149
Author(s):  
C. H. Ng ◽  
C. F. Lai ◽  
S. N. M. Yahaya ◽  
S. Shamsudin ◽  
S. N. A. S. Ahmad ◽  
...  

The springback failure of ultra-high strength boron steel (22MnB5) in hot press forming (HPF) process was characterized under bending and membrane conditions. Hot press forming for U–shaped parts with ultra-high strength boron steel were experimented and simulated to study the effect of initial blank temperatures on springback failure in the automotive industry. The results specify the various preheated temperature of 22MnB5 blank effect toward springback occurrences with reference to hot press forming dies design. ANSYS Workbench was used to verify finite element (FE) simulations of the processes in order to consolidate the knowledge of springback. The validated numerical simulation model were used in analyzing the stress and strain distributions along the formed part in the FE models, it was found that the springback angle was related in averaging value throughout quenching, regardless of the forming conditions. Springback failure mainly caused dimension deviation in hot press form parts due to the impact of thermal restoring moments and quenching rate of hot press forming process.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 827 ◽  
Author(s):  
Fengyong Wu ◽  
Wenchen Xu ◽  
Zhongze Yang ◽  
Bin Guo ◽  
Debin Shan

In order to manufacture complex curvilinear generatrix workpieces of high-temperature titanium alloy, the hot tensile behavior of Ti55 alloy sheet was tested and the hot press forming process was investigated using Finite Element Method (FEM) simulation and experiment. The hot tensile experiments of Ti55 rolled sheet were conducted at the temperatures of 800–900 °C with the strain rates of 0.001–0.1 s−1. According to the results of hot tensile tests and microstructure evolution, the proper hot press forming parameters were determined as the temperature of 850 °C and the strain rates of 0.001–0.01 s−1. The wrinkling mechanism in the transition region was analyzed and the initial blank sheet geometry was optimized by FE simulation of hot press forming. The two-step hot press forming process was better to produce the complex sheet workpiece of Ti55 alloy than the one-step hot forming scheme, which could restrain the wrinkling trend and ensure the microstructure and mechanical properties of the hot formed workpieces.


2010 ◽  
Vol 447-448 ◽  
pp. 760-764 ◽  
Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Mitsuaki Taniguchi ◽  
Sachiko Ogawa

Bamboo grows faster than other renewable natural materials. Bamboo fiber, in particular, has attracted attention as an environmentally superior material. Therefore, we proposed a sustainable manufacturing system using bamboo. An extraction method of bamboo fibers end-milled using a machining center with in-situ measurement is proposed. Bamboo fibers with high precision shape are efficiently acquired. In the present report, we propose the fabrication of binder-free composite by a hot press forming method that only uses bamboo fibers extracted by a machining center. We experimentally demonstrated various hot press forming conditions and achieved proper forming conditions to optimize the forming process. We also made various three-dimensional shapes considering the practical applications of the formed binder-free bamboo fiber moldings.


2017 ◽  
Vol 729 ◽  
pp. 110-114
Author(s):  
Jae Hong Kim ◽  
Dae Cheol Ko ◽  
Byung Min Kim

This paper aims to predict the hardness of hot formed part for tailor rolled blank (TRB) by the FE-simulation coupled with quenching factor analysis (QFA). Dilatometry test of boron steel is performed at various range of cooling rates from 0.2 to 100°C/s using the dilatometer with forced air cooling system. The dilatometry test provides a hardness data according to cooling curves which are used to determine the material constants (K1~K5) of QFA and the time‒temperature‒property (TTP) diagram of boron steel. Then, FE‒simulation of hot press forming is conducted to predict the cooling curves of hot formed TRB part with a thickness combination of thicker 1.6mm and thinner 1.2mm which is called as rear side member of automotive component. The cooling curves of FE-simulation are applied to predict the hardness of hot formed rear side member using the QFA. Also, experiment of hot press forming is performed to verify the predicted results and to examine the effect of cooling curves on the hardness.


2009 ◽  
Vol 19 (4) ◽  
pp. 913-916 ◽  
Author(s):  
Jeong-Hwan JANG ◽  
Jae-Ho LEE ◽  
Byeong-Don JOO ◽  
Young-Hoon MOON

Sign in / Sign up

Export Citation Format

Share Document