On the current mechanism in reverse‐biased amorphous‐silicon Schottky contacts. I. Zero bias barrier heights and current transport mechanism

1993 ◽  
Vol 74 (4) ◽  
pp. 2572-2580 ◽  
Author(s):  
K. J. B. M. Nieuwesteeg ◽  
M. van der Veen ◽  
T. J. Vink
2015 ◽  
Vol 29 (13) ◽  
pp. 1550076 ◽  
Author(s):  
H. Tecimer ◽  
Ö. Vural ◽  
A. Kaya ◽  
Ş. Altındal

The forward and reverse bias current–voltage (I–V) characteristics of Au/V-doped polyvinyl chloride+Tetracyanoquino dimethane/porous silicon (PVC+TCNQ/p-Si) structures have been investigated in the temperature range of 160–340 K. The zero bias or apparent barrier height (BH) (Φ ap = Φ Bo ) and ideality factor (n ap = n) were found strongly temperature dependent and the value of n ap decreases, while the Φ ap increases with the increasing temperature. Also, the Φ ap versus T plot shows almost a straight line which has positive temperature coefficient and it is not in agreement with the negative temperature coefficient of ideal diode or forbidden bandgap of Si (α Si = -4.73×10-4 eV/K ). The high value of n cannot be explained only with respect to interfacial insulator layer and interface traps. In order to explain such behavior of Φ ap and n ap with temperature, Φ ap Versus q/2kT plot was drawn and the mean value of (Φ Bo ) and standard deviation (σs) values found from the slope and intercept of this plot as 1.176 eV and 0.152 V, respectively. Thus, the modified ( ln (Io/T2)-(qσs)2/2(kT)2 versus (q/kT) plot gives the Φ Bo and effective Richardson constant A* as 1.115 eV and 31.94 A ⋅(cm⋅K)-2, respectively. This value of A*( = 31.94 A⋅( cm ⋅K)-2) is very close to the theoretical value of 32 A ⋅(cm⋅K)-2 for p-Si. Therefore, the forward bias I–V–T characteristics confirmed that the current-transport mechanism (CTM) in Au/V-doped PVC+TCNQ/p-Si structures can be successfully explained in terms of the thermionic emission (TE) mechanism with a Gaussian distribution (GD) of BHs at around mean BH.


1985 ◽  
Vol 58 (4) ◽  
pp. 1578-1583 ◽  
Author(s):  
Hideharu Matsuura ◽  
Akihisa Matsuda ◽  
Hideyo Okushi ◽  
Kazunobu Tanaka

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 388
Author(s):  
Jeongsoo Hong ◽  
Ki Hyun Kim ◽  
Kyung Hwan Kim

The rectifying characteristics of a Mo/SiC Schottky contact fabricated by facing targets sputtering system were investigated through current–voltage measurement. The Schottky diode parameters were extracted from the forward current–voltage characteristic curve by the Cheung and Cheung method and the Norde method. The as-deposited Mo/SiC Schottky contacts possessed Schottky barrier heights of 1.17 and 1.22 eV, respectively. The Schottky barrier heights of the diodes were decreased to 1.01 and 0.91 eV after annealing at 400 °C for 30 min. The ideality factor was increased from 1.14 and 1.08 to 1.51 and 1.41, respectively. This implies the presence of non-ideal behaviors due to a current transport mechanism other than ideal thermionic emission, and the non-ideal behaviors increased as a result of excessive thermal annealing. In contrast, only a negligible change was observed in the crystallographic characteristics. This result suggests that the reason for the deviation from the ideal rectifying characteristics of the Mo/SiC Schottky contact through the annealing process was the variation in the current transport mechanism, including recombination, tunneling, and/or minority carrier injection.


2000 ◽  
Vol 77 (26) ◽  
pp. 4353-4355 ◽  
Author(s):  
Kenji Shiojima ◽  
Tomoya Sugahara ◽  
Shiro Sakai

2021 ◽  
Vol 42 (3) ◽  
pp. 304-307
Author(s):  
Tao Zhang ◽  
Yanni Zhang ◽  
Jincheng Zhang ◽  
Xiangdong Li ◽  
Yueguang Lv ◽  
...  

Author(s):  
T. U. Kampen ◽  
W. Mönch

The Schottky barrier heights of silver and lead contacts on n-type GaN (0001) epilayers were determined from current-voltage characteristics. The zero-bias barrier heights and the ideality factors were found to be linearly correlated. Similar observations were previously reported for metal contacts on Si (111) and GaAs (110) surfaces. The barrier heights of ideal Schottky contacts are characterized by image force lowering of the barrier only. This gives an ideality factor of 1.01. From our data we obtain barrier heights of 0.82 eV and 0.73eV for ideal Ag and Pb contacts on GaN, respectively. The metal-induced gap states (MIGS) model predicts the barrier heights of ideal Schottky contacts on a given semiconductor to be linearly correlated with the electronegativities of the metals. The two important parameters of this MIGS-and-electronegativity model are the charge neutrality level (CNL) of the MIGS and a slope parameter. The CNL may be calculated from the dielectric band gap and using the empirical tight-binding method. The slope parameters are given by the optical dielectric constant of the respective semiconductor. The predictions of the MIGS model for metal/GaN contacts are confirmed by the results presented here and by barrier heights previously reported by others for Au, Ti, Pt, and Pd contacts on GaN.


2019 ◽  
Vol 125 (21) ◽  
pp. 214104 ◽  
Author(s):  
F. M. Coșkun ◽  
O. Polat ◽  
M. Coșkun ◽  
A. Turut ◽  
M. Caglar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document