Current-transport mechanism in Au/V-doped PVC+TCNQ/p-Si structures

2015 ◽  
Vol 29 (13) ◽  
pp. 1550076 ◽  
Author(s):  
H. Tecimer ◽  
Ö. Vural ◽  
A. Kaya ◽  
Ş. Altındal

The forward and reverse bias current–voltage (I–V) characteristics of Au/V-doped polyvinyl chloride+Tetracyanoquino dimethane/porous silicon (PVC+TCNQ/p-Si) structures have been investigated in the temperature range of 160–340 K. The zero bias or apparent barrier height (BH) (Φ ap = Φ Bo ) and ideality factor (n ap = n) were found strongly temperature dependent and the value of n ap decreases, while the Φ ap increases with the increasing temperature. Also, the Φ ap versus T plot shows almost a straight line which has positive temperature coefficient and it is not in agreement with the negative temperature coefficient of ideal diode or forbidden bandgap of Si (α Si = -4.73×10-4 eV/K ). The high value of n cannot be explained only with respect to interfacial insulator layer and interface traps. In order to explain such behavior of Φ ap and n ap with temperature, Φ ap Versus q/2kT plot was drawn and the mean value of (Φ Bo ) and standard deviation (σs) values found from the slope and intercept of this plot as 1.176 eV and 0.152 V, respectively. Thus, the modified ( ln (Io/T2)-(qσs)2/2(kT)2 versus (q/kT) plot gives the Φ Bo and effective Richardson constant A* as 1.115 eV and 31.94 A ⋅(cm⋅K)-2, respectively. This value of A*( = 31.94 A⋅( cm ⋅K)-2) is very close to the theoretical value of 32 A ⋅(cm⋅K)-2 for p-Si. Therefore, the forward bias I–V–T characteristics confirmed that the current-transport mechanism (CTM) in Au/V-doped PVC+TCNQ/p-Si structures can be successfully explained in terms of the thermionic emission (TE) mechanism with a Gaussian distribution (GD) of BHs at around mean BH.

2021 ◽  
Author(s):  
Şadan Özden ◽  
Nejmettin Avcı ◽  
Osman Pakma ◽  
Afşin İshak Kariper

Abstract A photopolymer based Al/NOA60/p-Si (metal-polymer-semiconductor) MPS device was fabricated and the current transport properties were investigated by using the forward bias current-voltage (I-V) characteristic in the temperature range of 80-300 K. The cross-sectional structure of polymer/semiconductor was revealed by the scanning electron microscope (SEM) image and it was seen that the NOA60 photopolymer was tidily coated on the p-Si surface. According to the I-V measurements at room temperature, the MPS device exhibits a good rectification ratio of 8140 at ±1V. Temperature-dependent I-V measurements (I-V-T) were analyzed on the basis of thermionic emission (TE) theory and an abnormal increase in zero-bias barrier height (BH) and a decrease in ideality factor (n) was observed with increasing temperature. Additionally, two different linear regions with distinct values from the theoretical value of the Richardson constant (A*) were observed in the conventional Richardson plot. Such deviations from ideal TE theory has been attributed to the effect of BH inhomogeneities. Gaussian distribution (GD) of BH model has applied the I-V-T results and double GD BH with mean values of 0.75±0.08 eV (80 – 140 K) and 1.02±0.11 eV (140 – 300 K) were calculated. Moreover, the A* value of 64.73 A/cm2K2 was calculated close to the known value of p-Si from the modified Richardson plot. Thus, it has been concluded that the current transport of the Al/NOA60/p-Si MPS device can be explained by TE with double GD BH model for a wide temperature region.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Shih-Wei Tan ◽  
Shih-Wen Lai

This paper presents a current transport mechanism of Pd metal-semiconductor-metal (MSM) GaAs diodes with a Schottky contact material formed by intentionally mixing SiO2into a Pd metal. The Schottky emission process, where the thermionic emission both over the metal-semiconductor barrier and over the insulator-semiconductor barrier is considered on the carrier transport of a mixed contact of Pd and SiO2(MMO) MSM diodes, is analyzed. The image-force lowering is accounted for. In addition, with the applied voltage increased, the carrier recombination is thus considered. The simulation data are presented to explain the experimental results clearly.


2013 ◽  
Vol 802 ◽  
pp. 199-203 ◽  
Author(s):  
Nathaporn Promros ◽  
Suguru Funasaki ◽  
Ryūhei Iwasaki ◽  
Tsuyoshi Yoshitake

n-Type nanocrystalline FeSi2/intrinsic Si/p-type Si heterojunctions were successfully fabricated by FTDCS and their forward current-voltage characteristics at low temperatures were analyzed on the basis of thermionic emission theory. The analysis of J-V characteristics exhibits an increase in the ideality factor and a decrease in the barrier height at low temperatures. The values of ideality factor were estimated to be 2.26 at 300 K and 9.29 at 77 K. The temperature dependent ideality factortogether with the constant value of parameter A indicated that a trap assisted multi-step tunneling process is the dominant carrier transport mechanism in this heterojunction. At high voltages, the current transport mechanism is dominated by SCLC process.


2021 ◽  
Vol 42 (3) ◽  
pp. 304-307
Author(s):  
Tao Zhang ◽  
Yanni Zhang ◽  
Jincheng Zhang ◽  
Xiangdong Li ◽  
Yueguang Lv ◽  
...  

2019 ◽  
Vol 125 (21) ◽  
pp. 214104 ◽  
Author(s):  
F. M. Coșkun ◽  
O. Polat ◽  
M. Coșkun ◽  
A. Turut ◽  
M. Caglar ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 461-466 ◽  
Author(s):  
Hiroki Niwa ◽  
Jun Suda ◽  
Tsunenobu Kimoto

Impact ionization coefficients of 4H-SiC were measured at room temperature and at elevated temperatures up to 200°C. Photomultiplication measurement was done in two complementary photodiodes to measure the multiplication factors of holes (Mp) and electrons (Mn), and ionization coefficients were extracted. Calculated breakdown voltage using the obtained ionization coefficients showed good agreement with the measured values in this study, and also in other reported PiN diodes and MOSFETs. In high-temperature measurement, breakdown voltage exhibited a positive temperature coefficient and multiplication factors showed a negative temperature coefficient. Therefore, extracted ionization coefficient has decreased which can be explained by the increase of phonon scattering. The calculated temperature dependence of breakdown voltage agreed well with the measured values not only for the diodes in this study, but also in PiN diode in other literature.


Sign in / Sign up

Export Citation Format

Share Document