A novel compact design of calibration equipment for gas and thermal sensors

2011 ◽  
Vol 82 (4) ◽  
pp. 043303 ◽  
Author(s):  
P. X. Feng ◽  
H. X. Zhang ◽  
X. Y. Peng ◽  
M. Sajjad ◽  
J. Chu
Author(s):  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim ◽  
Josaphat Tetuko Sri Sumantyo
Keyword(s):  

2020 ◽  
Vol 14 (1) ◽  
pp. 015002
Author(s):  
Xinguang Hu ◽  
Cheng Zeng ◽  
Jinsong Xia ◽  
Yunji Meng

2021 ◽  
pp. 1-16
Author(s):  
Paul Zakalek ◽  
Jingjing Li ◽  
Sarah Böhm ◽  
Ulrich Rücker ◽  
Jörg Voigt ◽  
...  

Compact accelerator-driven neutron sources allow to operate multiple optimised target-moderator-reflector (TMR) units adapted to the requirements of the respective instruments. The compact design of the TMR units allows an efficient coupling of neutron production, neutron moderation and extraction, but requires a novel way of optimisation. The neutronic performance of different TMR units based on polyethylene, heavy water and a mixture of heavy and light water moderators together with Pb and Be reflectors and a borated polyethylene absorber is discussed. Extraction channels for thermal and cold neutrons are investigated regarding the energy and time spectra.


Author(s):  
Fatih Güven

Gears are commonly used in transmission systems to adjust velocity and torque. An integral gear or an interference fit could be used in a gearbox. Integral gears are mostly preferred as driving gear for a compact design to reduce the weight of the system. Interference fit makes the replacement of damaged gear possible and re-use of the shaft compared to the integral shaft. However, internal pressure occurs between mating surfaces of the components mated. This internal pressure affects the stress distribution at the root and bottom land of the gear. In this case, gear parameters should be re-considered to assure gear life while reducing the size of the gear. In this study, interference fitted gear-shaft assembly was examined numerically. The effects of rim thickness, profile shifting, module and fit tolerance on bending stress occurring at the root of the gear were investigated to optimize gear design parameters. Finite element models were in good agreement with analytical solutions. Results showed that the rim thickness of the gear is the main parameter in terms of tangential stress occurring at the bottom land of the gear. Positive profile shifting reduces the tangential stress while the pitch diameter of the gear remains constant. Also, lower tolerance class could be selected to moderate stress for small rim thickness.


1993 ◽  
Vol 93 (3-4) ◽  
pp. 319-324 ◽  
Author(s):  
J. Soud�e ◽  
G. Chardin ◽  
Y. Giraud-H�raud ◽  
P. Pari ◽  
M. Chapellier
Keyword(s):  

2011 ◽  
Vol 317-319 ◽  
pp. 1153-1162
Author(s):  
Jium Ming Lin ◽  
Po Kuang Chang ◽  
Cheng Hung Lin ◽  
Qi Kun Zhang

This research proposes a wireless RFID-based thermal bubble accelerometer design, and relates more particularly for the technology to manufacture and package it on a flexible substrate. The key technology is to integrate both a thermal bubble accelerometer and a wireless RFID antenna on the same substrate, such that the accelerometer is very convenient for fabrication and usage. In this paper the heaters as well as the thermal sensors are directly adhering on the surface of the flexible substrate without the traditional floating structure. Thus the structure is much simpler and cheaper for manufacturing, and much more reliable in large acceleration impact condition without broken. Furthermore, the molecular weight of xenon gas is much larger than carbon dioxide, thus the performance of the accelerometer will be increased. In addition, the shape of the chamber is changed as a semi-cylindrical one instead of the conventional rectangular type. Comparisons of sensitivity and response time are also made; one can see the performances of the proposed new design with either semi-cylindrical chamber or filled with xenon gas are better.


Sign in / Sign up

Export Citation Format

Share Document