scholarly journals On the theory of translational energy distributions of product molecules of molecular beam reactions involving transient complexes. II

1977 ◽  
Vol 67 (4) ◽  
pp. 1636-1646 ◽  
Author(s):  
Gary Worry ◽  
R. A. Marcus
2008 ◽  
Vol 73 (6-7) ◽  
pp. 755-770 ◽  
Author(s):  
Andriy Pysanenko ◽  
Ján Žabka ◽  
Zdeněk Herman

The scattering of the hydrocarbon radical cation C2D4•+ from room-temperature carbon (highly oriented pyrolytic graphite, HOPG) surface was investigated at low incident energies of 6-12 eV. Mass spectra, angular and translational energy distributions of product ions were measured. From these data, information on processes at surfaces, absolute ion survival probability, and kinematics of the collision was obtained. The projectile ion showed both inelastic, dissociative and reactive scattering, namely the occurrence of H-atom transfer reaction with hydrocarbons present on the room-temperature carbon surface. The absolute survival probability of the ions for the incident angle of 30° (with respect to the surface) decreased from about 1.0% (16 eV) towards zero at incident energies below 10 eV. Estimation of the effective surface mass involved in the collision process led to m(S)eff of about 57 a.m.u. for inelastic non-dissociative collisions of C2D4•+ and of about 115 a.m.u. for fragment ions (C2D3+, C2D2•+) and ions formed in reactive surface collisions (C2D4H+, C2D2H+, contributions to C2D3+ and C2D2•+). This suggested a rather complex interaction between the projectile ion and the hydrocarbon-covered surface during the collision.


2003 ◽  
Vol 68 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Libor Mrázek ◽  
Ján Žabka ◽  
Zdeněk Dolejšek ◽  
Zdeněk Herman

The beam scattering method was used to investigate non-dissociative single-electron charge transfer between the molecular dication CO22+ and Ar or Ne at several collision energies between 3-10 eV (centre-of-mass, c.m.). Relative translational energy distributions of the product ions showed that in the reaction with Ar the CO2+ product was mainly formed in reactions of the ground state of the dication, CO22+(X3Σg-), leading to the excited states of the product CO2+(A2Πu) and CO2+(B2Σu+). In the reaction with Ne, the largest probability had the process from the reactant dication excited state CO22+(1Σg+) leading to the product ion ground state CO2+(X2Πg). Less probable were processes between the other excited states of the dication CO22+, (1∆g), (1Σu-), (3∆u), also leading to the product ion ground state CO2+(X2Πg). Using the Landau-Zener model of the reaction window, relative populations of the ground and excited states of the dication CO22+ in the reactant beam were roughly estimated as (X3Σg):(1∆g):(1Σg+):(1Σu-):(3∆u) = 1.0:0.6:0.5:0.25:0.25.


1994 ◽  
Vol 72 (3) ◽  
pp. 660-672 ◽  
Author(s):  
R. Glen Macdonald ◽  
Kopin Liu Argonne ◽  
David M. Sonnenfroh ◽  
Di-Jia Liu

The title reaction has been studied in a crossed molecular beam apparatus. Both the product state distributions and the translational energy dependence of the reaction cross sections were measured under single collision conditions. Excellent agreement was found over a wide temperature range (26–3800 K) between rate constants deduced from the translational excitation function and recent thermal kinetic data. The rotational state distribution was found to be very cold compared to the reaction exothermicity, and could be described by a Boltzmann temperature of 110 K for all K-doublet levels. The vibronic state distribution was also found to be cold, with 70% of the products formed in the vibrational ground state. By comparing the molecular beam results for vibronic state distributions with those obtained from recent bulb experiments, it was conjectured that there appears to be a strong correlation between rotation in the reactants and bending excitation in the products.


1985 ◽  
Vol 51 ◽  
Author(s):  
H. Vach ◽  
J. Häger ◽  
B. Simon ◽  
C. Flytzanis ◽  
H. Walther

ABSTRACTMolecular beam scattering from solid surfaces has long been recognized as a powerful means for investigation of gas-surface reaction dynamics. With the help of the recently developed laser-induced fluorescence and ionization techniques for state-selective detection, one can now measure the angular and velocity distributions of the scattered molecules together with their internal energy distributions. Such measurements fully describe the average energy and momentum exchanges between molecules and surfaces and give thus full information on the dynamics of the interaction. Recently, also the scattering of vibrationally excited NO molecules was investigated. The paper gives a review of new experiments with emphasis on the investigation of the scattering of NO molecules from a pyrographite surface. A simple model using transport properties of the solid is presented which accounts surprisingly well for the observed features.


Sign in / Sign up

Export Citation Format

Share Document