Tracer‐diffusion coefficients for both localized and nonlocalized adsorption: Theory and molecular‐dynamics simulation

1995 ◽  
Vol 103 (19) ◽  
pp. 8694-8704 ◽  
Author(s):  
Janhavi S. Raut ◽  
Kristen A. Fichthorn
2009 ◽  
Vol 283-286 ◽  
pp. 24-29 ◽  
Author(s):  
Elena V. Levchenko ◽  
Alexander V. Evteev ◽  
Irina V. Belova ◽  
Graeme E. Murch

. In this paper, carbon diffusion in cementite is studied by molecular dynamics simulation. An assumption that carbon-carbon interaction occurs only indirectly via neighbouring iron atoms is used. An interstitial mechanism of carbon diffusion in cementite is revealed. The principal tracer diffusion coefficients and activation parameters of carbon diffusion in cementite are calculated for the temperature range 1223-1373 K and compared with the available published experimental data.


1980 ◽  
Vol 35 (5) ◽  
pp. 493-499 ◽  
Author(s):  
Isao Okada ◽  
Ryuzo Takagi ◽  
Kazutaka Kawamura

Abstract A new transport property, the self-exchange velocity (SEV) of neighbouring unlike ions, has been evaluated from molecular dynamics simulations of molten LiCl, RbCl and LiRbCl2 at 1100 K and the mixture at 750 K. From the increase of the SEV's in the order Rb+ (pure salt) <Li+ (mixture) < Rb+ (mixture) < Li+ (pure salt), it is conjectured that there is a strong correlation between the SEV’s and the internal mobilities. An interpretation of the Chemla effect in its dependence on temperature is given. The pair correlation functions and the self-diffusion coefficients are also calculated and discussed.


2011 ◽  
Vol 697-698 ◽  
pp. 192-197 ◽  
Author(s):  
Ting Ting Zhou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu

The interfacial energy and diffusion phenomenon of the Al2O3(012)-SiC (011) interface model are studied based on molecular dynamics. The interfacial energy increases firstly until reaches its maximum 0.459J/m2at the temperature of 1500K and then decreases. The relationship of diffusion coefficients for each kind of atoms is C>Si>O>Al. Diffusion coefficients of atoms increase at first and then decrease as the temperature goes up. This indicates the diffusion mechanism has been changed during the temperature rising process.


Sign in / Sign up

Export Citation Format

Share Document