Heat transfer coefficient of nanofluids in minichannel heat sink

Author(s):  
Adi T. Utomo ◽  
Ashkan I. T. Zavareh ◽  
Heiko Poth ◽  
Mohd Wahab ◽  
Mohammad Boonie ◽  
...  
Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


Author(s):  
Suchismita Sarangi ◽  
Karthik K. Bodla ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

Conventional microchannel heat sinks provide good heat dissipation capability but are associated with high pressure drop and corresponding pumping power. The use of a manifold system that distributes the flow into the microchannels through multiple, alternating inlet and outlet pairs is investigated here. This manifold arrangement greatly reduces the pressure drop incurred due to the smaller flow paths, while simultaneously increasing the heat transfer coefficient by tripping the thermal boundary layers. A three-dimensional numerical model is developed and validated, to study the effect of various geometric parameters on the performance of the manifold microchannel heat sink. Apart from a deterministic analysis, a probabilistic optimization study is also performed. In the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic optimization approach yields an optimal design that is also robust and reliable. Uncertainty-based optimization also yields auxiliary information regarding local and global sensitivities and helps identify the input parameters to which outputs are most sensitive. This information can be used to design improved experiments targeted at the most sensitive inputs. Optimization under uncertainty also provides a quantitative estimate of the allowable uncertainty in input parameters for an acceptable uncertainty in the relevant output parameters. The optimal geometric design parameters with uncertainties that maximize heat transfer coefficient while minimizing pressure drop for fixed input conditions are identified for a manifold microchannel heat sink. A comparison between the deterministic and probabilistic optimization results is also presented.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
T. David ◽  
D. Mendler ◽  
A. Mosyak ◽  
A. Bar-Cohen ◽  
G. Hetsroni

The thermal characteristics of a laboratory pin-fin microchannel heat sink were empirically obtained for heat flux, q″, in the range of 30–170 W/cm2, mass flux, m, in the range of 230–380 kg/m2 s, and an exit vapor quality, xout, from 0.2 to 0.75. Refrigerant R 134a (HFC-134a) was chosen as the working fluid. The heat sink was a pin-fin microchannel module installed in open flow loop. Deviation from the measured average temperatures was 1.5 °C at q = 30 W/cm2, and 2.0 °C at q = 170 W/cm2. These results indicate that use of pin-fin microchannel heat sink enables keeping an electronic device near uniform temperature under steady state and transient conditions. The heat transfer coefficient varied significantly with refrigerant quality and showed a peak at an exit vapor quality of 0.55 in all the experiments. At relatively low heat fluxes and vapor qualities, the heat transfer coefficient increased with vapor quality. At high heat fluxes and vapor qualities, the heat transfer coefficient decreased with vapor quality. A noteworthy feature of the present data is the larger magnitude of the transient heat transfer coefficients compared to values obtained under steady state conditions. The results of transient boiling were compared with those for steady state conditions. In contrast to the more common techniques, the low cost technique, based on open flow loop was developed to promote cooling using micropin fin sinks. Results of this experimental study may be used for designing the cooling high power laser and rocket-born electronic devices.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6647
Author(s):  
Magdalena Piasecka ◽  
Beata Maciejewska ◽  
Paweł Łabędzki

This work focuses on subcooled boiling heat transfer during flow in a minichannel heat sink with three or five minichannels of 1 mm depth. The heated element for FC-72 flowing along the minichannels was a thin foil of which temperature on the outer surface was measured due to the infrared thermography. The test section was oriented vertically or horizontally. A steady state heat transfer process and a laminar, incompressible flow of the fluid in a central minichannel were assumed. The heat transfer problem was described by the energy equations with an appropriate system of boundary conditions. Several mathematical methods were applied to solve the heat transfer problem with the Robin condition to determine the local heat transfer coefficients at the fluid/heated foil interface. Besides the 1D approach as a simple analytical method, a more sophisticated 2D approach was proposed with solutions by the Trefftz functions and ADINA software. Finite element method (FEM) calculations were conducted to find the temperature field in the flowing fluid and in the heated wall. The results were illustrated by graphs of local heated foil temperature and transfer coefficients as a function of the distance from the minichannel inlet. Temperature distributions in the heater and the fluid obtained from the FEM computations carried out by ADINA software were also shown. Similar values of the heat transfer coefficient were obtained in both the FEM calculations and the 1D approach. Example boiling curves indicating nucleation hysteresis are shown and discussed.


2009 ◽  
Vol 132 (3) ◽  
Author(s):  
A. Gifford ◽  
A. Hoffie ◽  
T. Diller ◽  
S. Huxtable

Experiments were performed to characterize the performance of Schmidt–Boelter heat flux gauges in stagnation and shear convective air flows. The gauges were of a standard design (25.4 mm and 38 mm in diameter), using a copper heat sink with water cooling channels around the active sensing element. A simple model of the gauges using an internal thermal resistance between the sensor surface and the heat sink is used to interpret the results. The model predicts a nonlinear dependence of the gauge sensitivity as a function of the heat transfer coefficient. Experimental calibration systems were developed to simultaneously measure the heat flux gauge response relative to a secondary standard under the same flow and thermal conditions. The measured gauge sensitivities in the stagnation flow matched the model, and were used to estimate the value of the internal thermal resistance for each of the four gauges tested. For shear flow, the effect of the varying gauge surface temperature on the boundary layer was included. The results matched the model with a constant factor of 15–25% lower effective heat transfer coefficient. When the gauge was water cooled, the effect of the internal thermal resistance of the gauge was markedly different for the two flow conditions. In the stagnation flow, the internal resistance further decreased the apparent gauge sensitivity. Conversely, in shear flow, the resistance was effectively offset by the cooler heat sink of the gauge, and the resulting sensitivities were nearly the same as, or larger than, for radiation.


2021 ◽  
Author(s):  
Anwarul Karim ◽  
Yoon Jo Kim ◽  
Jong-Hoon Kim

Abstract As technology becomes increasingly miniaturized, thermal management becomes challenging to keep devices away from overheating due to extremely localized heat dissipation. Two-phase cooling or flow-boiling in micro-spaces utilizes the highly efficient thermal energy transport of phase change from liquid to vapor. However, the excessive consumption of liquid-phase by highly localized heat source causes the two-phase flow maldistribution, leading to a significantly reduced heat transfer coefficient, high-pressure loss, and limited flow rate. In this study, flow-boiling in a two-dimensional microgap heat sink with a hydrophilic coating is investigated with bubble morphology, heat transfer, and pressure drop for conventional (non-hydrophilic) and hydrophilic heat sinks. The experiments are carried out on a stainless steel plate, having a micro gap depth of 170 µm using deionized water at room temperature. Two different hydrophilic surfaces (partial and full channel shape) are fabricated on the heated surface to compare the thermal performance with the conventional surface. Vapor films and slugs are flushed quickly on the hydrophilic surfaces, resulting in heat transfer enhancement on the hydrophilic heat sink compared to the conventional heat sink. The channel hydrophilic heat sink shows better cooling performance and pressure stability as it provides a smooth route for the incoming water to cool the hot spot. Moreover, the artificial neural network prediction of heat transfer coefficient shows a good agreement with the experimental results as data fits within ±5% average error.


Author(s):  
Sebastian Scholl ◽  
Catherine Gorle ◽  
Farzad Houshmand ◽  
Tanya Liu ◽  
Hyoungsoon Lee ◽  
...  

This study considers CFD simulations with conjugate heat transfer performed in the framework of designing a complex micro-scale cooling geometry. The numerical investigation of the three-dimensional, laminar flow (Reynolds number smaller than 480) and the solid conduction is done on a reduced model of the heat sink micro-structure to enable exploring a variety of configurations at a limited computational cost. The reduced model represents a unit-cell, and uses periodic and symmetry boundary conditions to mimic the conditions in the entire cooling manifold. A simulation of the entire heat sink micro-structure was performed to verify the unit-cell set-up, and the comparison demonstrated that the unit-cell simulations allow reducing the computational cost by two orders of magnitude while retaining accurate results. The baseline design for the unit-cell represents a configuration used in traditional electronic heat sinks, i.e. a simple channel geometry with a rectangular cross section, with a diameter of 50 μm, where the fluid flows between two cooling fins. Subsequently three types of modified geometries with feature sizes of 50 μm were considered: baffled geometries that guide the flow towards the hotspot region, geometries where the fins are connected by crossbars, and a woodpile structure without cooling fins. Three different mass-flow rates were tested. Based on the medium mass-flow rate considered, the woodpile geometry showed the highest heat transfer coefficient with an increase of 70% compared to the baseline geometry, but at the cost of increasing the pressure drop by more than 300%. The crossbar geometries were shown to be promising configurations, with increases in the heat transfer coefficient of more than 20% for a 70% increase in pressure drop. The potential for further optimization of the crossbar configurations by adding or removing individual crossbars will be investigated in a follow up study. The results presented demonstrate the increase in performance that can be obtained by investigating a variety of designs for single phase cooling devices using unit-cell conjugate heat transfer simulations.


Sign in / Sign up

Export Citation Format

Share Document