One step synthesis of pure cubic and monoclinic HfO2 nanoparticles: Correlating the structure to the electronic properties of the two polymorphs

2012 ◽  
Vol 112 (10) ◽  
pp. 104107 ◽  
Author(s):  
P. Rauwel ◽  
E. Rauwel ◽  
C. Persson ◽  
M. F. Sunding ◽  
A. Galeckas
2020 ◽  
Author(s):  
Haoyang Yu ◽  
Chuyi Ni ◽  
Alyxandra Thiessen ◽  
Ziqi Li ◽  
Jonathan G.C. Veinot

<div> <div> <div> <p>Polygermanes are germanium-based analogues of polyolefins and possess polymer backbones made up catenated Ge atoms. In the present contribution we report the preparation of a stable germanium polyethylene analogue – polydihydrogermane (i.e., (GeH2)n) – via two straightforward approaches that involve topotactic deintercalation of the CaGe Zintl phase. The resulting (GeH2)n possess morphologically dependent chemical and electronic properties and thermally decompose to yield amorphous hydrogenated Ge. We also show that the resulting (GeH2)n provide a platform from which functionalized polygermanes can be prepared via thermally-induced hydrogermylation-mediated pendant group substitution. This facile one-step derivatization reaction exploits Ge–H reactivity and opens the door to a wide array of tailored functional polygermanes. </p> </div> </div> </div>


2016 ◽  
Vol 4 (42) ◽  
pp. 16731-16736 ◽  
Author(s):  
Yusong Sheng ◽  
Yue Hu ◽  
Anyi Mei ◽  
Pei Jiang ◽  
Xiaomeng Hou ◽  
...  

By mixing perovskite MAPbI3(MA = CH3NH3+) with LiCl, an effective one-step drop-coating approach was developed to improve the performance of hole-conductor-free printable perovskite solar cells.


2020 ◽  
Author(s):  
Haoyang Yu ◽  
Chuyi Ni ◽  
Alyxandra Thiessen ◽  
Ziqi Li ◽  
Jonathan G.C. Veinot

<div> <div> <div> <p>Polygermanes are germanium-based analogues of polyolefins and possess polymer backbones made up catenated Ge atoms. In the present contribution we report the preparation of a stable germanium polyethylene analogue – polydihydrogermane (i.e., (GeH2)n) – via two straightforward approaches that involve topotactic deintercalation of the CaGe Zintl phase. The resulting (GeH2)n possess morphologically dependent chemical and electronic properties and thermally decompose to yield amorphous hydrogenated Ge. We also show that the resulting (GeH2)n provide a platform from which functionalized polygermanes can be prepared via thermally-induced hydrogermylation-mediated pendant group substitution. This facile one-step derivatization reaction exploits Ge–H reactivity and opens the door to a wide array of tailored functional polygermanes. </p> </div> </div> </div>


2018 ◽  
Vol 63 ◽  
pp. 159-165 ◽  
Author(s):  
Menglin Li ◽  
Yue-Min Xie ◽  
Xiuwen Xu ◽  
Yanping Huo ◽  
Sai-Wing Tsang ◽  
...  

2020 ◽  
Author(s):  
Haoyang Yu ◽  
Chuyi Ni ◽  
Alyxandra Thiessen ◽  
Ziqi Li ◽  
Jonathan G.C. Veinot

<div> <div> <div> <p>Polygermanes are germanium-based analogues of polyolefins and possess polymer backbones made up catenated Ge atoms. In the present contribution we report the preparation of a stable germanium polyethylene analogue – polydihydrogermane (i.e., (GeH2)n) – via two straightforward approaches that involve topotactic deintercalation of the CaGe Zintl phase. The resulting (GeH2)n possess morphologically dependent chemical and electronic properties and thermally decompose to yield amorphous hydrogenated Ge. We also show that the resulting (GeH2)n provide a platform from which functionalized polygermanes can be prepared via thermally-induced hydrogermylation-mediated pendant group substitution. This facile one-step derivatization reaction exploits Ge–H reactivity and opens the door to a wide array of tailored functional polygermanes. </p> </div> </div> </div>


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
J.M. Bonar ◽  
R. Hull ◽  
R. Malik ◽  
R. Ryan ◽  
J.F. Walker

In this study we have examined a series of strained heteropeitaxial GaAs/InGaAs/GaAs and InGaAs/GaAs structures, both on (001) GaAs substrates. These heterostructures are potentially very interesting from a device standpoint because of improved band gap properties (InAs has a much smaller band gap than GaAs so there is a large band offset at the InGaAs/GaAs interface), and because of the much higher mobility of InAs. However, there is a 7.2% lattice mismatch between InAs and GaAs, so an InxGa1-xAs layer in a GaAs structure with even relatively low x will have a large amount of strain, and misfit dislocations are expected to form above some critical thickness. We attempt here to correlate the effect of misfit dislocations on the electronic properties of this material.The samples we examined consisted of 200Å InxGa1-xAs layered in a hetero-junction bipolar transistor (HBT) structure (InxGa1-xAs on top of a (001) GaAs buffer, followed by more GaAs, then a layer of AlGaAs and a GaAs cap), and a series consisting of a 200Å layer of InxGa1-xAs on a (001) GaAs substrate.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document