Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

2014 ◽  
Vol 116 (12) ◽  
pp. 124304 ◽  
Author(s):  
Monika Kumari ◽  
Marc Widdrat ◽  
Éva Tompa ◽  
Rene Uebe ◽  
Dirk Schüler ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1845
Author(s):  
Abdulkader Baki ◽  
Norbert Löwa ◽  
Amani Remmo ◽  
Frank Wiekhorst ◽  
Regina Bleul

Micromixer technology is a novel approach to manufacture magnetic single-core iron oxide nanoparticles that offer huge potential for biomedical applications. This platform allows a continuous, scalable, and highly controllable synthesis of magnetic nanoparticles with biocompatible educts via aqueous synthesis route. Since each biomedical application requires specific physical and chemical properties, a comprehensive understanding of the synthesis mechanisms is not only mandatory to control the size and shape of desired nanoparticle systems but, above all, to obtain the envisaged magnetic particle characteristics. The accurate process control of the micromixer technology can be maintained by adjusting two parameters: the synthesis temperature and the residence time. To this end, we performed a systematic variation of these two control parameters synthesizing magnetic nanoparticle systems, which were analyzed afterward by structural (transmission electron microscopy and differential sedimentation centrifugation) and, especially, magnetic characterization methods (magnetic particle spectroscopy and AC susceptibility). Furthermore, we investigated the reproducibility of the microtechnological nanoparticle manufacturing process compared to batch preparation. Our characterization demonstrated the high magnetic quality of single-core iron oxide nanoparticles with core diameters in the range of 20 nm to 40 nm synthesized by micromixer technology. Moreover, we demonstrated the high capability of a newly developed benchtop magnetic particle spectroscopy device that directly monitored the magnetic properties of the magnetic nanoparticles with the highest sensitivity and millisecond temporal resolution during continuous micromixer synthesis.


Nanoscale ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 7771-7780 ◽  
Author(s):  
Eric Teeman ◽  
Carolyn Shasha ◽  
James E. Evans ◽  
Kannan M. Krishnan

An examination of the effects of intracellular environmental conditions on the dynamic magnetic response of superparamagnetic iron oxide nanoparticles.


2018 ◽  
Vol 7 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Prashant L. Suryawanshi ◽  
Shirish H. Sonawane ◽  
Bharat A. Bhanvase ◽  
Muthupandian Ashokkumar ◽  
Makarand S. Pimplapure ◽  
...  

AbstractIn the present work, synthesis of iron oxide nanoparticles (NPs) using continuous flow microreactor (MR) and advanced flow™ reactor (AFR™) has been investigated with evaluation of the efficacy of the two types of MRs. Effect of the different operating parameters on the characteristics of the obtained NPs has also been investigated. The synthesis of iron oxide NPs was based on the co-precipitation and reduction reactions using iron (III) nitrate precursor and sodium hydroxide as reducing agents. The iron oxide NPs were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and X-ray diffraction (XRD) analysis. The mean particle size of the obtained NPs was less than 10 nm at all flow rates (over the range of 20−60 ml/h) in the case of spiral MR, while, in the case of AFR™, the particle size of NPs was below 20 nm with no specific trend observed with the operating flow rates. The XRD and TEM analyses of iron oxide NPs confirmed the crystalline nature and nanometer size range, respectively. Further, magnetic properties of the synthesized iron oxide NPs were studied using electron spin resonance spectroscopy; the resonance absorption peak shows theg-factor values as 2.055 and 2.034 corresponding to the magnetic fields of 319.28 and 322.59 mT for MR and AFR™, respectively.


2009 ◽  
Vol 404 (20) ◽  
pp. 3666-3670 ◽  
Author(s):  
Zhijun Zhang ◽  
Liviu Clime ◽  
Boguslaw Tomanek ◽  
Garnette Sutherland ◽  
Teodor Veres

Sign in / Sign up

Export Citation Format

Share Document