Role of bubble growth dynamics on microscale heat transfer events in microchannel flow boiling process

2015 ◽  
Vol 107 (24) ◽  
pp. 244103 ◽  
Author(s):  
Sajjad Bigham ◽  
Saeed Moghaddam
2021 ◽  
Author(s):  
Wei Li ◽  
Yuhao Lin ◽  
Yang Luo

Abstract The application of two-phase flow in microchannel needs further research to achieve a more stable and highly-performed heat sink. Utilizing self-rewetting fluid is one of the promising ways to minimize the dryout area, thus increasing the heat transfer coefficient and critical heat flux (CHF). To investigate the heat transfer performance of self-rewetting fluid in microchannel flow boiling, a numerical investigation is carried out in this study utilizing the VOF method, phase-change model and continuum surface force (CSF) model with surface tension versus temperature. Athree-dimensional numerical investigation of bubble growth and merger is carried out with water and 0.2%wt heptanol solution. The single bubble growing cases, two x-direction/y-direction bubbles merging cases and three bubbles merging cases are conducted. Since the bubbles never detach the heated walls, the dryout area and regions nearby the contact line with thin liquid film dominated the heat transfer process during the bubbles' growth and merger. The self-rewetting fluid is able to minimize the local dryout area and achieve the larger thin liquid film area around the contact line due to the Marangoni effect and thermocapillary force, thus result in higher wall heat flux when compared to water. The two x-direction bubbles merging case performed best for heat transfer in the microchannel, in which self-rewetting fluid achieves heat transfer enhancement for over 50 percent compared with water.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
David W. Fogg ◽  
Kenneth E. Goodson

While microchannel flow boiling has received much research attention, past work has not considered the impact of acoustic waves generated by rapidly nucleating bubbles. The present work provides a theoretical framework for these pressure waves, which resembles classical “water hammer” theory and predicts a strong influence on bubble nucleation rates and effective convection coefficients. These pressure waves result directly from confinement in microchannel geometries, reflect from geometrical transitions, and superimpose to create large transients in the static liquid pressure. Feedback from the pressure waves inhibits bubble growth rates, reducing the effective heat transfer. Pressure depressions generated by the propagating pressure pulses can cause other bubbles to grow at lower than expected wall temperatures. The additional nucleation enhances heat transfer over short times but increased flow instability may inhibit heat transfer over longer periods. The limited quantitative measurements available in the literature indicate confined bubble growth rates in microchannels are significantly lower than those predicted by the classical Rayleigh–Plesset equation. The present model predicts confined bubble growth rates to within ± 20%. A nondimensional number indicative of the relative magnitude of the water hammer pressure to bubble pressure is proposed to characterize the transitions from conventional to microchannel flow boiling.


2011 ◽  
Vol 312-315 ◽  
pp. 548-553 ◽  
Author(s):  
Yuan Wang ◽  
Khellil Sefiane

Single vapour bubble growth and heat transfer mechanism during flow boiling in a rectangular horizontal mini-channel were experimentally investigated. The hydraulic diameter of the channel was 1454 μm, with an aspect ratio (Win/din) of 10. Degassed FC-72 was used as the working liquid. In this paper, bubble equivalent radius was found to increase linearly till a critical time, beyond which the growth turned into exponential. Bubble growth rate increases with increasing heat flux. Heat transfer mechanisms of the bubble growth at different heat fluxes and mass fluxes were discussed. In addition, the relation between thermal and flow conditions with bubble temporal geometry was explored.


Author(s):  
Yuhao Lin ◽  
Junye Li ◽  
Kan Zhou ◽  
Wei Li ◽  
Kuang Sheng ◽  
...  

Abstract The micro structured surfaces have significant impact on the flow patterns and heat transfer mechanisms during the flow boiling process. The hydrophobic surface promotes bubble nucleation while the hydrophilic surface supplies liquid to a heating surface, thus there is a trade-off between a hydrophobic and a hydrophilic surface. To examine the effect of heterogeneous wetting surface on flow boiling process, an experimental investigation of flow boiling in a rectangular vertical narrow microchannel with the heterogeneous wetting surface was conducted with deionized water as the working fluid. The heat transfer characteristics of flow boiling in the microchannel was studied and the flow pattern was photographed with a high-speed camera. The onset of flow boiling and heat transfer coefficient were discussed with the variation of heatfluxes and mass fluxes, the trends of which were analyzed along with the flow patterns. During the boiling process, the dominated heat transfer mechanism was nucleate boiling, with numerous nucleate sites between the hydrophilic/hydrophobic stripes and on the hydrophobic ones. In the meantime, after the merged bubbles were constrained by the channel walls, it would be difficult for them to expand towards upstream since they were restricted by the contact line between hydrophilic/hydrophobic stripes, thereby reduce the flow instability and achieve remarkable heat transfer performance.


Author(s):  
Zhichuan Sun ◽  
Yang Luo ◽  
Junye Li ◽  
Wei Li ◽  
Jingzhi Zhang ◽  
...  

Abstract The manifold microchannel heat sink receives an increasing number of attention lately due to its high heat flux dissipation. Numerical investigation of boiling phenomena in manifold microchannel (MMC) heat sinks remains a challenge due to the complexity of fluid route and the limitation of numerical accuracy. In this study, a computational fluid dynamics (CFD) approach including subcooled two-phase flow boiling process and conjugate heat transfer effect is performed using a MMC unit cell model. Different from steady-state single phase prediction in MMC heat sink, this type of modeling allows for the transient simulation for two-phase interface evolution during the boiling process. A validation case is conducted to validate the heat transfer phenomenon among three phases. Besides, this model is used for the assessment of the manifold dimensions in terms of inlet and outlet widths at the mass flux of 1300 kg/m2·s. With different ratios of inlet-to-outlet area, the thermal resistances remain nearly stable.


Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

The present study is performed to analyze the wall heat transfer mechanisms during growth of a vapor bubble inside a microchannel. The microchannel is of 200 μm square cross section and a vapor bubble begins to grow at one of the walls, with liquid coming in through the channel inlet. The complete Navier-Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid vapor interface is captured using the level set technique. The bubble grows rapidly due to heat transfer from the walls and soon turns into a plug filling the entire channel cross section. The average wall heat transfer at the channel walls is studied for different values of wall superheat and incoming liquid mass flux. The results show that the wall heat transfer increases with wall superheat but is almost unaffected by the liquid flow rate. The bubble growth is found to be the primary mechanism of increasing wall heat transfer as it pushes the liquid against the walls thereby influencing the thermal boundary layer development.


Sign in / Sign up

Export Citation Format

Share Document