scholarly journals Vertical bending strength and torsional rigidity analysis of formula student car chassis

Author(s):  
Hashfi Hazimi ◽  
Ubaidillah ◽  
Adi Eka Putra Setiyawan ◽  
Hanief Cahya Ramdhani ◽  
Murnanda Zaesy Saputra ◽  
...  
2011 ◽  
Vol 338 ◽  
pp. 193-198
Author(s):  
Lei Lei ◽  
Tian Min Guan ◽  
Jiang Bo Li

When the FA pin-cycloid drive is used in high precision control drive system, especially in the robot drive, there are strict requirements to torsional rigidity .Usually in rated torque, the elastic lost motion produced by the torsional elastic deformation must meet certain precision. This paper analyzes all kinds of elastic factors which affect the rigidity, establishes mathematical model of the machine rigidity and calculates the rigidity for the FA pin-cycloidal drive. Meanwhile ANSYS is applied to build finite element analysis model, and the finite element contact analysis results coincide with the rigidity analysis theory, which confirms the correctness of the machine rigid mathematical model.


The article presents the study of processes of structure formation of cement stone and products of hardening of organic-mineral compositions with fibrous filler (shavings) by the electronic scanning microscopy method. It is established that the additive-free cement stone at the age of 28 days has a dense and homogeneous structure, consists of calcium hydro-silicates, Portlandite and calcite - newgrowths characteristic for cement systems. Cellulose fibers, which make up the bulk of the substance of shavings, are sufficiently active, which determines the high adhesion of the hydration products of the cement binder to their surface. It is shown that the introduction of shavings into the organo-mineral composition leads to inhibition of cement hydration processes. Organo-mineral compositions with different shavings content (two compositions) were analyzed. The first composition is characterized by a fairly dense structure, the cement stone consists of globular nanoscale nuclei of hydrosilicates, Portlandite and calcite. The second composition has a loose porous structure, cement stone consists of non-hydrated cement grains, newgrowths are represented by calcite and vaterite. The structure of the contact zone "osprey fiber-cement stone" in the organo-mineral composition of the first composition indicates a good adhesion of the filler surface with the phases of hydrated cement. The use of shavings as a fibrous filler (the first composition) increases the tensile and bending strength, as well as the wear resistance of organo-mineral compositions. The data obtained by scanning electron microscopy are confirmed by the results of studying the processes of structure formation of cement stone by quantitative x-ray phase analysis.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
AMIR SYAFIQ SAMSUDIN ◽  
MOHD HISBANY MOHD HASHIM ◽  
SITI HAWA HAMZAH ◽  
AFIDAH ABU BAKAR

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


1994 ◽  
Vol 43 (489) ◽  
pp. 599-605 ◽  
Author(s):  
Akira YAMAKAWA ◽  
Takehisa YAMAMOTO ◽  
Tomoyuki AWAZU ◽  
Kenji MATSUNUMA ◽  
Takao NISHIOKA

Author(s):  
Luís Fernando Marzola da Cunha ◽  
Matheus Lisboa Cardoch Valdes ◽  
Rhander Viana ◽  
Danilo dos Santos Oliveira ◽  
Luiz Eduardo Rodrigues Vieira

Sign in / Sign up

Export Citation Format

Share Document