scholarly journals Numerical simulation of multicomponent gas flow in vicinity of bluff body within non-isothermal boundary layer

Author(s):  
S. Valger ◽  
N. Fedorova
2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Adrian Stuparu ◽  
Sorin Holotescu

AbstractThe influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used (realizable k-ε, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.


2018 ◽  
Vol 49 (4) ◽  
pp. 415-427
Author(s):  
Igor Ivanovich Lipatov ◽  
Vladimir Yakovlevich Neiland

Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 2074
Author(s):  
Yan Li ◽  
Chuan Li ◽  
Yajie Wu ◽  
Cong Liu ◽  
Han Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document