Thermal conductivity of chalcogenide glass phases governed by disparity in phonon group velocity

Scilight ◽  
2019 ◽  
Vol 2019 (28) ◽  
pp. 280002
Author(s):  
Phil Dooley
2021 ◽  
pp. 309-321
Author(s):  
Geoffrey Brooker

“Umklapp collisions and thermal conductivity” deals with heat conduction in a dielectric solid. Collisions of phonons are divided into Umklapp and normal according as a reciprocal lattice vector is or is not involved in the phonon momentum balance. A local temperature is defined by appeal to local thermodynamic equilibrium. An equilibrium phonon distribution can be off-centred, yet non-decaying, if the only collisions are “normal”, conserving the total phonon momentum. Then heat flow does not decay, even if a representative collision reverses the phonon group velocity. Conversely, in an Umklapp collision it is the non-conservation of phonon momentum that causes heat flow to decay.


2013 ◽  
Vol 27 (09) ◽  
pp. 1350031 ◽  
Author(s):  
BIJAYA KUMAR SAHOO ◽  
SUSANT KUMAR SAHOO ◽  
SUKDEV SAHOO

The spontaneous (SP) and piezoelectric (PZ) polarization present in the wurtzite III nitrides influence the optical and electrical properties of these materials. The effects of SP and PZ polarization on thermal properties of III nitrides have yet to be investigated. Here we have investigated the SP and PZ effects on thermal conductivity of InN . Inclusion of polarization property modifies the group velocity of phonons. The combined phonon scattering rates and thermal conductivity k of InN are calculated using modified phonon group velocity, Debye frequency and Debye temperature. Without SP and PZ polarization, the room temperature thermal conductivity of InN is found to be 132.55 W/m.K. Inclusion of SP and PZ polarization property enhances the room temperature thermal conductivity from 132.55 to 134.32 W/m.K. Our predicted thermal conductivity values are closer to the recent experimental value 120 W/m.K measured by Levander et al. for a high quality irradiated InN films at room temperature.


2000 ◽  
Vol 626 ◽  
Author(s):  
B. Yang ◽  
G. Chen

ABSTRACTPast studies on the thermal conductivity suggest that phonon confinement and the associated group velocity reduction are the causes of the observed drop in the cross-plane thermal conductivity of semiconductor superlattices. In this work, we investigate the contribution of phonon confinement to the in-plane thermal conductivity of superlattices and the anisotropic effects of phonon confinement on the thermal conductivity in different directions, using a lattice dynamics model. We find that the reduced phonon group velocity due to phonon confinement may account for the dramatic reduction in the cross-plane thermal conductivity, but the in-plane thermal conductivity drop, caused by the reduced group velocity, is much less than the reported experimental results. This suggests that the reduced relaxation time due to diffuse interface phonon scattering, dislocation scattering, etc, should make major contribution to the in-plane thermal conductivity reduction.


Author(s):  
Hsu Kai Weng ◽  
Akira NAGAKUBO ◽  
Hideyuki Watanabe ◽  
Hirotsugu OGI

Abstract We study lattice thermal conductivity of isotope diamond superlattices consisting of 12C and 13C diamond layers at various superlattice periods. It is found that the thermal conductivity of a superlattice is significantly deduced from that of pure diamond because of the reduction of the phonon group velocity near the folded Brillouin zone. The results show that asymmetric superlattices with different number of layers of 12C and 13C diamonds exhibit higher thermal conductivity than symmetric superlattices even with the same superlattice period, and we find that this can be explained by the trade-off between the effects of phonon specific heat and phonon group velocity. Furthermore, impurities and imperfect superlattice structures are also found to significantly reduce the thermal conductivity, suggesting that these effects can be exploited to control the thermal conductivity over a wide range.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Takafumi Ishibe ◽  
Ryo Okuhata ◽  
Tatsuya Kaneko ◽  
Masato Yoshiya ◽  
Seisuke Nakashima ◽  
...  

AbstractManaging heat dissipation is a necessity for nanoscale electronic devices with high-density interfaces, but despite considerable effort, it has been difficult to establish the phonon transport physics at the interface due to a “complex” interface layer. In contrast, the amorphous/epitaxial interface is expected to have almost no “complex” interface layer due to the lack of lattice mismatch strain and less associated defects. Here, we experimentally observe the extremely-small interface thermal resistance per unit area at the interface of the amorphous-germanium sulfide/epitaxial-lead telluride superlattice (~0.8 ± 4.0 × 10‒9 m2KW−1). Ab initio lattice dynamics calculations demonstrate that high phonon transmission through this interface can be predicted, like electron transport physics, from large vibron-phonon density-of-states overlapping and phonon group velocity similarity between propagon in amorphous layer and “conventional” phonon in crystal. This indicates that controlling phonon (or vibron) density-of-states and phonon group velocity similarity can be a comprehensive guideline to manage heat conduction in nanoscale systems.


2017 ◽  
Vol 19 (47) ◽  
pp. 32072-32078 ◽  
Author(s):  
Aamir Shafique ◽  
Young-Han Shin

The effect of strain on the phonon properties such as phonon group velocity, phonon anharmonicity, phonon lifetime, and lattice thermal conductivity of monolayer 2H-MoTe2is studied by solving the Boltzmann transport equation based on first principles calculations.


1976 ◽  
Vol 57 (5) ◽  
pp. 487-488 ◽  
Author(s):  
J.E. Graebner ◽  
B. Golding

1999 ◽  
Vol 60 (4) ◽  
pp. 2627-2630 ◽  
Author(s):  
Shin-ichiro Tamura ◽  
Yukihiro Tanaka ◽  
Humphrey J. Maris

RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 87981-87986 ◽  
Author(s):  
Lin Zhang ◽  
Morgan Ruesch ◽  
Xiaoliang Zhang ◽  
Zhitong Bai ◽  
Ling Liu

Interchain hydrogen bonds enhance thermal conduction in crystalline polymer nanofibers by confining torsional motion of polymer chains and by increasing the group velocity of phonons.


2020 ◽  
Vol 22 (1) ◽  
pp. 306-312 ◽  
Author(s):  
Yupeng Shen ◽  
Fancy Qian Wang ◽  
Jie Liu ◽  
Qian Wang

A new 3D carbon allotrope composed of C20 as its structural unit is proposed, which is stable and possesses high thermal conductivity due to the weak anharmonicity and large group velocity of phonons in this structure.


Sign in / Sign up

Export Citation Format

Share Document