THE EFFECT OF SPONTANEOUS AND PIEZOELECTRIC POLARIZATION ON THERMAL CONDUCTIVITY OF InN

2013 ◽  
Vol 27 (09) ◽  
pp. 1350031 ◽  
Author(s):  
BIJAYA KUMAR SAHOO ◽  
SUSANT KUMAR SAHOO ◽  
SUKDEV SAHOO

The spontaneous (SP) and piezoelectric (PZ) polarization present in the wurtzite III nitrides influence the optical and electrical properties of these materials. The effects of SP and PZ polarization on thermal properties of III nitrides have yet to be investigated. Here we have investigated the SP and PZ effects on thermal conductivity of InN . Inclusion of polarization property modifies the group velocity of phonons. The combined phonon scattering rates and thermal conductivity k of InN are calculated using modified phonon group velocity, Debye frequency and Debye temperature. Without SP and PZ polarization, the room temperature thermal conductivity of InN is found to be 132.55 W/m.K. Inclusion of SP and PZ polarization property enhances the room temperature thermal conductivity from 132.55 to 134.32 W/m.K. Our predicted thermal conductivity values are closer to the recent experimental value 120 W/m.K measured by Levander et al. for a high quality irradiated InN films at room temperature.

2000 ◽  
Vol 626 ◽  
Author(s):  
B. Yang ◽  
G. Chen

ABSTRACTPast studies on the thermal conductivity suggest that phonon confinement and the associated group velocity reduction are the causes of the observed drop in the cross-plane thermal conductivity of semiconductor superlattices. In this work, we investigate the contribution of phonon confinement to the in-plane thermal conductivity of superlattices and the anisotropic effects of phonon confinement on the thermal conductivity in different directions, using a lattice dynamics model. We find that the reduced phonon group velocity due to phonon confinement may account for the dramatic reduction in the cross-plane thermal conductivity, but the in-plane thermal conductivity drop, caused by the reduced group velocity, is much less than the reported experimental results. This suggests that the reduced relaxation time due to diffuse interface phonon scattering, dislocation scattering, etc, should make major contribution to the in-plane thermal conductivity reduction.


2013 ◽  
Vol 1558 ◽  
Author(s):  
Qing Hao ◽  
Minqing Li ◽  
Garrett Joseph Coleman ◽  
Qiang Li ◽  
Pierre Lucas

ABSTRACTWith extremely disordered atomic structures, a glass possesses a thermal conductivity k that approaches the theoretical minimum of its composition, known as the Einstein’s limit.1 Depending on the material composition and the extent of disorder, the thermal conductivity of some glasses can be down to 0.1-0.3 W/m∙K at room temperature,2,3 representing some of the lowest k values among existing solids. Such a low k can be further reduced by the interfacial phonon scattering within a nanocomposite that can be used for thermal insulation applications. In this work, nanocomposites hot pressed from the mixture of glass nanopowder (GeSe4 or Ge20Te70Se10) and commercial SiO2 nanoparticles, or pure glass nanopowder, are investigated for the potential k reduction. It is found that adding SiO2 nanoparticles will instead increase k if the measured k values for usually porous nanocomposites are converted into those for the corresponding solid (kSolid) with Eucken’s formula. In contrast, pure glass nano-samples always show kSolid data significantly reduced from that for the starting glass. For a pure GeSe4 nano-sample, kSolid would beat the Einstein’s limit for its composition.


Author(s):  
Ulises Acevedo Salas ◽  
Ismail Fourati ◽  
Jean Juraszek ◽  
Fabienne Richomme ◽  
Denis Pelloquin ◽  
...  

The strong interplay between magnetism and transport can tune the thermoelectric properties in chalcogenides and oxides. In the case of ferromagnetic CoS 2 pyrite, it was previously shown that the power factor is large at room temperature, reaching 1 mW m −1  K −2 and abruptly increases for temperatures below the Curie transition ( T C ), an increase potentially due to a magnonic effect on the Seebeck ( S ) coefficient. The too large thermal conductivity approximately equal to 10.5 W m −1  K −1 at room temperature prevents this pyrite from being a good thermoelectric material. In this work, samples belonging to the Co 1− x Fe x S 2 pyrite family ( x  = 0, 0.15 and 0.30) have thus been investigated in order to modify the thermal properties by the introduction of disorder on the Co site. We show here that the thermal conductivity can indeed be reduced by such a substitution, but that this substitution predominantly induces a reduction of the electronic part of the thermal conductivity and not of the lattice part. Interestingly, the magnonic contribution to S below T C disappears as x increases, while at high T , S tends to a very similar value (close to −42 µV K −1 ) for all the samples investigated. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.


1978 ◽  
Vol 100 (2) ◽  
pp. 330-333 ◽  
Author(s):  
R. E. Taylor

Samples of sintered and arc-cast tungsten are available from NBS as thermal conductivity (SRM 730) and electrical resistivity (SRM 799) standards for the temperature range from 4 to 3000K. NBS recommended values for these properties above room temperature are based on results of various researchers during a previous international program which included arc-cast and sintered tungsten. The sintered tungsten used in this program was found to be unsuited for use as a standard material due to inhomogeneity and high temperature instability. The present paper gives results at high temperatures for thermal conductivity, electrical resistivity, specific heat, thermal diffusivity and Wiedemann-Franz-Lorenz ratio for a sample of the NBS sintered tungsten using the Properties Research Laboratory’s multiproperty apparatus. These results are compared to values recommended by the Thermophysical Properties Research Center, NBS, and an international program.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450032 ◽  
Author(s):  
Degang Zhao ◽  
Min Zuo ◽  
Zhenqing Wang ◽  
Xinying Teng ◽  
Haoran Geng

The Ta -doped ZrNiSn half-Heusler alloys, Zr 1-x Ta x NiSn , were synthesized by arc melting and hot-press sintering. Microstructure of Zr 1-x Ta x NiSn compounds were analyzed and the thermoelectric (TE) properties of Zr 1-x Ta x NiSn compounds were measured from room temperature to 823 K. The electrical conductivity increased with increasing Ta content. The Seebeck coefficient of Zr 1-x Ta x NiSn compounds was sharply decreased with increasing Ta content. The Hall mobility was proportional to T-1.5 above 673 K, indicating that the acoustic phonon scattering was predominant in the temperature range. The thermal conductivity was effectively depressed by introducing Ta substitution. The figure of merit of ZrNiSn compounds was improved due to the decreased thermal conductivity and increased electrical conductivity. The maximum ZT value of 0.60 was achieved for Zr 0.97 Ta 0.03 NiSn sample at 823 K.


2014 ◽  
Vol 783-786 ◽  
pp. 437-442 ◽  
Author(s):  
Gun Young Oh ◽  
Dae Guen Kim ◽  
Young Gyu Yoo ◽  
Young Ok Yoon ◽  
Shae K. Kim ◽  
...  

The thermal conductivities of binary Mg-CaO and Mg-Zn, and ternary Mg-Zn-CaO alloys have been investigated by evaluating the effect of CaO on pure Mg and Mg-Zn alloys, with an emphasis to develop a new Mg alloy by compromising thermal conductivity, process-ability and mechanical property. The Mg alloys specimens were prepared by casting into a steel mold and then by machining. The thermal conductivities of the alloys were determined by evaluating the thermal properties of specific heat and diffusivity, from room temperature to 200 °C. OM, SEM, and EDS were used to analyze the microstructures and phases. The fluidity was also investigated by using a spiral fluidity mold for improved process-ability during actual die casting.


10.30544/392 ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 1-10
Author(s):  
Dragan Miroslav Manasijevic ◽  
Žarko Radović ◽  
Nada Štrbac ◽  
Ljubiša Balanović ◽  
Uroš Stamenković ◽  
...  

This work aims to investigate the microstructural and thermal properties of as-cast high carbon and high chromium cold work tool steel. The microstructure was investigated by using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD) method. It was determined that at room temperature the microstructure of the investigated tool steel includes a lamellar network of M7C3 carbide precipitates along grain boundaries of ferrite grains in the base. Thermal diffusivity, specific heat capacity and thermal conductivity of the investigated steel alloy were determined in the temperature interval from 25 to 400 °C by using the laser-flash method. Thermal conductivity increases from 24.9 at 25 °C to 26.9 W/m·K at 400 °C. Phase transition temperatures in the temperature region from room temperature to 1250 °C were experimentally determined using differential scanning calorimetry (DSC). One endothermic effect in the temperature interval from 803 to 820 °C, corresponding to the ferrite/austenite phase transformation, was detected during sample heating. Experimental results were compared with the results of phase equilibria calculations obtained from the ThermoCalc software and TCFE6 database.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4080 ◽  
Author(s):  
Se Yun Kim ◽  
Hyun-Sik Kim ◽  
Kyu Hyoung Lee ◽  
Hyun-jun Cho ◽  
Sung-sil Choo ◽  
...  

Doping is known as an effective way to modify both electrical and thermal transport properties of thermoelectric alloys to enhance their energy conversion efficiency. In this project, we report the effect of Pd doping on the electrical and thermal properties of n-type Cu0.008Bi2Te2.7Se0.3 alloys. Pd doping was found to increase the electrical conductivity along with the electron carrier concentration. As a result, the effective mass and power factors also increased upon the Pd doping. While the bipolar thermal conductivity was reduced with the Pd doping due to the increased carrier concentration, the contribution of Pd to point defect phonon scattering on the lattice thermal conductivity was found to be very small. Consequently, Pd doping resulted in an enhanced thermoelectric figure of merit, zT, at a high temperature, due to the enhanced power factor and the reduced bipolar thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document