On singularity theorems and curvature growth

1987 ◽  
Vol 28 (1) ◽  
pp. 142-145 ◽  
Author(s):  
L. B. Szabados
Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 171
Author(s):  
Folkert Kuipers ◽  
Xavier Calmet

In this paper, we discuss singularity theorems in quantum gravity using effective field theory methods. To second order in curvature, the effective field theory contains two new degrees of freedom which have important implications for the derivation of these theorems: a massive spin-2 field and a massive spin-0 field. Using an explicit mapping of this theory from the Jordan frame to the Einstein frame, we show that the massive spin-2 field violates the null energy condition, while the massive spin-0 field satisfies the null energy condition, but may violate the strong energy condition. Due to this violation, classical singularity theorems are no longer applicable, indicating that singularities can be avoided, if the leading quantum corrections are taken into account.


2002 ◽  
Vol 17 (20) ◽  
pp. 2747-2747
Author(s):  
A. BEESHAM

The singularity theorems of general relativity predict that gravitational collapse finally ends up in a spacetime singularity1. The cosmic censorship hypothesis (CCH) states that such a singularity is covered by an event horizon2. Despite much effort, there is no rigorous formulation or proof of the CCH. In view of this, examples that appear to violate the CCH and lead to naked singularities, in which non-spacelike curves can emerge, rather than black holes, are important to shed more light on the issue. We have studied several collapse scenarios which can lead to both situations3. In the case of the Vaidya-de Sitter spacetime4, we have shown that the naked singularities that arise are of the strong curvature type. Both types of singularities can also arise in higher dimensional Vaidya and Tolman-Bondi spacetimes, but black holes are favoured in some sense by the higher dimensions. The charged Vaidya-de Sitter spacetime also exhibits both types of singularities5.


1983 ◽  
Vol 15 (7) ◽  
pp. 641-653 ◽  
Author(s):  
Richard P. A. C. Newman

2019 ◽  
pp. 109-116
Author(s):  
Steven Carlip

This final chapter consists of a brief discussion of where the reader can go from here: active research topics in general relativity and gravitation, open questions, and ideas for further study. Topics include exact and approximate solutions of the field equations, including numerical methods and perturbation theory; problems in mathematical relativity, including global geometric methods, singularity theorems, cosmic censorship, and asymptotic conditions; alternative models such as scalar-tensor models; approaches to quantum gravity; and experimental gravity. These topics are not discussed in any depth; rather, the chapter is meant as a “teaser” to encourage readers to look further.


2018 ◽  
Vol 81 (3) ◽  
pp. 759-799 ◽  
Author(s):  
Andrew L. Krause ◽  
Meredith A. Ellis ◽  
Robert A. Van Gorder

2020 ◽  
Vol 35 (14) ◽  
pp. 2030007 ◽  
Author(s):  
Yen Chin Ong

The singularity theorems of Hawking and Penrose tell us that singularities are common place in general relativity. Singularities not only occur at the beginning of the Universe at the Big Bang, but also in complete gravitational collapses that result in the formation of black holes. If singularities — except the one at the Big Bang — ever become “naked,” i.e. not shrouded by black hole horizons, then it is expected that problems would arise and render general relativity indeterministic. For this reason, Penrose proposed the cosmic censorship conjecture, which states that singularities should never be naked. Various counterexamples to the conjecture have since been discovered, but it is still not clear under which kind of physical processes one can expect violation of the conjecture. In this short review, I briefly examine some progresses in space–time singularities and cosmic censorship conjecture. In particular, I shall discuss why we should still care about the conjecture, and whether we should be worried about some of the counterexamples. This is not meant to be a comprehensive review, but rather to give an introduction to the subject, which has recently seen an increase of interest.


2015 ◽  
Vol 25 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Tian Ma ◽  
Erik M. Bollt

We introduce a definition of finite-time curvature evolution along with our recent study on shape coherence in nonautonomous dynamical systems. Comparing to slow evolving curvature preserving the shape, large curvature growth points reveal the dramatic change on shape such as the folding behaviors in a system. Closed trough curves of low finite-time curvature (FTC) evolution field indicate the existence of shape coherent sets, and troughs in the field indicate the most significant shape coherence. Here, we will demonstrate these properties of the FTC, as well as contrast to the popular Finite-Time Lyapunov Exponent (FTLE) computation, often used to indicate hyperbolic material curves as Lagrangian Coherent Structures (LCS). We show that often the FTC troughs are in close proximity to the FTLE ridges, but in other scenarios, the FTC indicates entirely different regions.


Sign in / Sign up

Export Citation Format

Share Document