Deriving the Hamilton equations of motion for a nonconservative system using a variational principle

1998 ◽  
Vol 39 (3) ◽  
pp. 1495-1500 ◽  
Author(s):  
Frank Thomas Tveter
2021 ◽  
Vol 14 (1) ◽  
pp. 35-47

Abstract: We constructed the Hamiltonian formulation of continuous field systems with third order. A combined Riemann–Liouville fractional derivative operator is defined and a fractional variational principle under this definition is established. The fractional Euler equations and the fractional Hamilton equations are obtained from the fractional variational principle. Besides, it is shown that the Hamilton equations of motion are in agreement with the Euler-Lagrange equations for these systems. We have examined one example to illustrate the formalism. Keywords: Fractional derivatives, Lagrangian formulation, Hamiltonian formulation, Euler-lagrange equations, Third-order lagrangian.


1995 ◽  
Vol 62 (3) ◽  
pp. 685-691 ◽  
Author(s):  
F. Ma ◽  
T. K. Caughey

The coefficients of a linear nonconservative system are arbitrary matrices lacking the usual properties of symmetry and definiteness. Classical modal analysis is extended in this paper so as to apply to systems with nonsymmetric coefficients. The extension utilizes equivalence transformations and does not require conversion of the equations of motion to first-order forms. Compared with the state-space approach, the generalized modal analysis can offer substantial reduction in computational effort and ample physical insight.


2019 ◽  
Vol 16 (10) ◽  
pp. 1950160 ◽  
Author(s):  
Sameerah Jamal

We determine the approximate Noether point symmetries of the variational principle characterizing second-order equations of motion of a particle in a (finite-dimensional) Riemannian manifold. In particular, the Lagrangian comprises of kinetic energy and a potential [Formula: see text], perturbed to [Formula: see text]. We establish a convenient system of approximate geometric conditions that suffices for the computation of approximate Noether symmetry vectors and moreover, simplifies the problem of the effect of higher orders of the perturbation. The general results are applied to several practical problems of interest and we find extra Noether symmetries at [Formula: see text].


2007 ◽  
Vol 85 (10) ◽  
pp. 1023-1034 ◽  
Author(s):  
M Grigorescu

An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical, and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector that includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker–Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment as a collective variable, rather than as a parameter, is presented in the Appendix. PACS Nos.: 03.65.–w, 03.65.Sq, 05.30.–d, 45.10.Db


1983 ◽  
Vol 29 (1) ◽  
pp. 111-125 ◽  
Author(s):  
Robert G. Littlejohn

An elementary but rigorous derivation is given for a variational principle for guiding centre motion. The equations of motion resulting from the variational principle (the drift equations) possess exact conservation laws for phase volume, energy (for time-independent systems), and angular momentum (for azimuthally symmetric systems). The results of carrying the variational principle to higher order in the adiabatic parameter are displayed. The behaviour of guiding centre motion in azimuthally symmetric fields is discussed, and the role of angular momentum is clarified. The application of variational principles in the derivation and solution of gyrokinetic equations is discussed.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050078
Author(s):  
Emanonfi Elias N’Dolo ◽  
Dine Ousmane Samary ◽  
Baloitcha Ezinvi ◽  
Mahouton Norbert Hounkonnou

From a study of an oscillator in a 4D noncommutative (NC) spacetime, we establish the Hamilton equations of motion. The formers are solved to give the oscillator position and momentum coordinates. These coordinates are used to build a metric similar to that describing a cosmic string. On this basis, Dirac and Klein–Gordon oscillators are investigated. Their spectrum and dynamics are analyzed giving rise to novel interesting properties.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1059 ◽  
Author(s):  
Zdenek Biolek ◽  
Dalibor Biolek ◽  
Viera Biolkova

The necessary and sufficient conditions of the validity of Hamilton’s variational principle for circuits consisting of (α,β) elements from Chua’s periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called Σ-diagonal with a constant sum of the indices α and β. In this case, the Lagrangian is the sum of the state functions of the elements of the L or +R types minus the sum of the state functions of the elements of the C or −R types. The equations of motion generated by this Lagrangian are always of even-order. If all the elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais–Uhlenbeck oscillator via the elements from Chua’s table.


Author(s):  
Hwang-Kuen Chen ◽  
Der-Ming Ku ◽  
Lien-Wen Chen

Abstract The stability behavior of a cantilevered shaft, rotating at a constant speed and subjected to a follower force at the free end, is studied by the finite element method. The equations of motion for such a gyroscopic system are formulated by using deformation shape functions developed from Timoshenko beam theory. The effects of translational and rotatory inertia, gyroscopic moments, bending and shear deformations are included. In order to determine the critical load of the present nonconservative system more quickly and efficiently, a simple and direct method that utilizes the eigenvalue sensitivity with respect to the follower force is introduced. The numerical results show that for the present nonconservative system, the onset of flutter instability occurs when the first and second backward whirl speeds are coincident. And also, due to the effect of the gyroscopic moments, the critical flutter load decreases as the rotational speed increases.


Sign in / Sign up

Export Citation Format

Share Document