An innovative experimental apparatus for the analysis of natural gas hydrate erosion process using cavitating jet

2020 ◽  
Vol 91 (9) ◽  
pp. 095107
Author(s):  
Yiqun Zhang ◽  
Kexian Zhao ◽  
Xiaoya Wu ◽  
Shouceng Tian ◽  
Huaizhong Shi ◽  
...  
2021 ◽  
Vol 92 (10) ◽  
pp. 105110
Author(s):  
Jingsheng Lu ◽  
Dongliang Li ◽  
Deqing Liang ◽  
Lingli Shi ◽  
Xuebing Zhou ◽  
...  

2022 ◽  
Vol 8 ◽  
pp. 202-216
Author(s):  
Yiqun Zhang ◽  
Xiaoya Wu ◽  
Xiao Hu ◽  
Bo Zhang ◽  
Jingsheng Lu ◽  
...  

2021 ◽  
Vol 312 ◽  
pp. 08009
Author(s):  
Mirko Filipponi ◽  
Alberto Maria Gambelli ◽  
Yan Li ◽  
Andrea Presciutti ◽  
Beatrice Castellani ◽  
...  

Carbon dioxide injection into natural gas hydrate reservoirs represents a promising opportunity to predispose a theoretically carbon neutral energy source. This technique allows to replace methane molecules with an equal number of carbon dioxide molecules and, consequently, to balance in advance emissions associated to methane utilization. While the direct CH4/CO2 replacement has been widely investigated, more data and scientific evidences are required to well define the feasibility of recovering methane by replacing it with CO2-based gaseous mixtures. In this sense, the most promising opportunity consists in flue-gas mixtures. In some cases, the presence of nitrogen was found capable to improve the overall efficiency, due to the direct competition between CH4 and N2 molecules to fill small cages characterizing hydrate structures. Moreover, these mixtures are extremely less-expensive than pure carbon dioxide. In this work, a binary CO2/N2 (50/50 vol%) gaseous mixture was used to recover methane contained into hydrate structures. Experiments were carried out in a small-scale experimental apparatus, designed to simulate a natural gas hydrate reservoir and to intervene on it with replacement techniques. Composition of gaseous mixtures present into hydrates and in the gaseous phase present immediately above, where defined via gas-chromatographic analyses. Finally, results were compared with data currently present in literature, in order to validate their consistency.


2021 ◽  
Vol 18 (2) ◽  
pp. 323-338
Author(s):  
Xiong-Qi Pang ◽  
Zhuo-Heng Chen ◽  
Cheng-Zao Jia ◽  
En-Ze Wang ◽  
He-Sheng Shi ◽  
...  

AbstractNatural gas hydrate (NGH) has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973. At least 29 global estimates have been published from various studies so far, among which 24 estimates are greater than the total conventional gas resources. If drawn in chronological order, the 29 historical resource estimates show a clear downward trend, reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time. A time series of the 29 estimates was used to establish a statistical model for predict the future trend. The model produces an expected resource value of 41.46 × 1012 m3 at the year of 2050. The statistical trend projected future gas hydrate resource is only about 10% of total natural gas resource in conventional reservoir, consistent with estimates of global technically recoverable resources (TRR) in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches. Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources, only those on the very top of the gas hydrate resource pyramid will be added to future energy supply. It is unlikely that the NGH will be the major energy source in the future.


ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 3017-3023
Author(s):  
Song Deng ◽  
Dingkun Ling ◽  
Binbin Zhou ◽  
Yu Gong ◽  
Xin Shen ◽  
...  

2021 ◽  
Author(s):  
Min Zhang ◽  
Ming Niu ◽  
Shiwei Shen ◽  
Shulin Dai ◽  
Yan Xu

Sign in / Sign up

Export Citation Format

Share Document