Electrostatic frequency reduction: A negative stiffness mechanism for measuring dissipation in a mechanical oscillator at low frequency

2021 ◽  
Vol 92 (1) ◽  
pp. 015101
Author(s):  
A. Erwin ◽  
K. J. Stone ◽  
D. Shelton ◽  
I. Hahn ◽  
W. Huie ◽  
...  
2021 ◽  
Vol 11 (23) ◽  
pp. 11539
Author(s):  
Cong Hung Nguyen ◽  
Cong Minh Ho ◽  
Kyoung Kwan Ahn

This research introduces an air spring vibration isolator system (ASVIS) based on a negative-stiffness structure (NSS) to improve the vehicle seat’s vibration isolation performance at low excitation frequencies. The main feature of the ASVIS consists of two symmetric bellows-type air springs which were designed on the basis of a negative stiffness mechanism. In addition, a crisscross structure with two straight bars was also used as the supporting legs to provide the nonlinear characteristics with NSS. Moreover, instead of using a vertical mechanical spring, a sleeve-type air spring was employed to provide positive stiffness. As a result, as the weight of the driver varies, the dynamic stiffness of the ASVIS can be easily adjusted and controlled. Next, the effects of the dimension parameters on the nonlinear force and nonlinear stiffness of ASVIS were analyzed. A design process for the ASVIS is provided based on the analytical results in order to achieve high static–low dynamic stiffness. Finally, numerical simulations were performed to evaluate the effectiveness of the ASVIS. The results obtained in this paper show that the values of the seat displacement of the ASVIS with NSS were reduced by 77.16% in comparison with those obtained with the traditional air spring isolator without NSS, which indicates that the design of the ASVIS isolator with NSS allows the effective isolation of vibrations in the low-frequency region.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4644
Author(s):  
Lijun Liu ◽  
Yongzhong Nie ◽  
Ying Lei

Loess–mudstone/soil-rock interfacial landslide is one of the prominent landslide hazards that occurs in soil rock contacting zones. It is necessary to develop sensors with high sensitivity to weak and low frequency vibrations for the early warning of such interfacial landslides. In this paper, a novel monitoring sensor prototype with enhanced and adaptive sensitivity is developed for this purpose. The novelty of the sensitive sensor is based on the variable capacitances and negative stiffness mechanism due to the electric filed forces on the vibrating plate. Owing to the feedback control of adjustable electrostatic field by an embedded micro controller, the sensor has adaptive amplification characteristics with high sensitivity to weak and low frequency input and low sensitivity to high input. The design and manufacture of the proposed sensor prototype by Micro-Electro-Mechanical Systems (MEMS) with proper packaging are introduced. Post-signal processing is also presented. Some preliminary testing of the prototype and experimental monitoring of sand interfacial slide which mimics soil–rock interfacial landslide were performed to demonstrate the performance of the developed sensor prototype with adaptive amplification and enhanced sensitivity.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 1935-1947
Author(s):  
Ming Li ◽  
Wei Cheng ◽  
Ruili Xie

This article presents a quasi–zero-stiffness isolator with a cam-based negative-stiffness mechanism, where the cam has a user-defined noncircular profile to generate negative stiffness to counterbalance the positive stiffness of the vertical spring and yield the quasi–zero-stiffness characteristic around the equilibrium position. Unlike previous studies, the proposed quasi–zero-stiffness isolator has the preferable feature that the desired cubic restoring force can be directly obtained through the well-designed profile of the cam in the negative-stiffness mechanism with the friction considered during the model design, rather than through the Taylor expansion and friction-ignoring assumption, which can avoid the approximation error between the theoretical design and the specific realization. The pure-cubic nonlinear differential equation of motion of the quasi–zero-stiffness isolator is derived and solved with the harmonic balance method, followed by the discussion of the relevant dynamic characteristics. Experimental studies are carried out based on the physical prototype of the quasi–zero-stiffness isolator. The results show that the quasi–zero-stiffness isolator can greatly extend the isolation frequency bandwidth and has a much lower resonance peak. In the low-frequency band, the quasi–zero-stiffness isolator greatly outperforms the corresponding linear system but is equivalent or even inferior in the high-frequency range with the increase of excitation force.


2022 ◽  
pp. 107754632110623
Author(s):  
Peiman Harouni ◽  
Nader Khajeh Ahmad Attari ◽  
Fayaz Rahimzadeh Rofooei

In this study, a nonlinear absorber that works with a negative stiffness mechanism is suggested to mitigate vibration, and its effect on the reduction of vibration is investigated. The negative stiffness, which is inherently nonlinear, creates internal resonance; therefore, the vibration energy can be transmitted from low-frequency to high-frequency vibrating modes, causing vibration suppression. The nonlinear absorber is added to the primary nonlinear system, and when the main system is subjected to external resonance due to harmonic excitation, the negative stiffness parameter of absorber is so adjusted that autoparametric resonance occurs and vibration is reduced. First, the mathematical model of the system is presented and the governing differential equations of the motion are derived, and then, using the multiple scale method, the equations are solved for the case without, and with the 1:3 internal resonance. The responses and their stability are inspected, discussed, and compared. After that, the effect of negative stiffness and damping parameters on vibration amplitude reduction is investigated and the adequacy of the proposed absorber will be demonstrated by numerical analysis. Finally, the energy exchange between the primary system and the absorber will be demonstrated by plotting the responses in the state space and the displacement response Fourier spectrum.


2020 ◽  
Vol 10 (20) ◽  
pp. 7342
Author(s):  
Yamin Zhao ◽  
Junning Cui ◽  
Junchao Zhao ◽  
Xingyuan Bian ◽  
Limin Zou

To improve the low-frequency isolation performance of optical platforms, an electromagnetic active-negative-stiffness generator (EANSG) was proposed, using nano-resolution laser interferometry sensors to monitor the micro-vibration of an optical platform, and precision electromagnetic actuators integrated with a relative displacement feedback strategy to counteract the positive stiffness of pneumatic springs within a micro-vibration stroke, thereby producing high-static-low-dynamic stiffness characteristics. The effectiveness of the method was verified by both theoretical and experimental analyses. The experimental results show that the vertical natural frequency of the optical platform was reduced from 2.00 to 1.37 Hz, the root mean square of displacement was reduced from 1.28 to 0.69 μm, and the root mean square of velocity was reduced from 14.60 to 9.33 μm/s, proving that the proposed method can effectively enhance the low frequency isolation performance of optical platforms.


2019 ◽  
Vol 114 (25) ◽  
pp. 251902 ◽  
Author(s):  
Kai Wang ◽  
Jiaxi Zhou ◽  
Qiang Wang ◽  
Huajiang Ouyang ◽  
Daolin Xu

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Smruti R. Panigrahi ◽  
Brian F. Feeny ◽  
Alejandro R. Diaz

This work regards the use of cubic springs with intervals of negative stiffness, in other words, “snap-through” elements, in order to convert low-frequency ambient vibrations into high-frequency oscillations, referred to as “twinkling.” The focus of this paper is on the bifurcation of a two-mass chain that, in the symmetric system, involves infinitely many equilibria at the bifurcation point. The structure of this “eclipse bifurcation” is uncovered, and perturbations of the bifurcation are studied. The energies associated with the equilibria are examined.


Author(s):  
Smruti R. Panigrahi ◽  
Brian F. Feeny ◽  
Alejandro R. Diaz

This work regards the use of cubic springs with intervals of negative stiffness, in other words “snap-through” elements, in order to convert low-frequency ambient vibrations into high-frequency oscillations, referred to as “twinkling”. The focus of this paper is on a global bifurcation of a two-mass chain which, in the symmetric system, involves infinitely many equilibria at the bifurcation point. The structure of this “eclipse” bifurcation is uncovered, and perturbations of the bifurcation are studied. The energies associated with the equilibria are examined.


Sign in / Sign up

Export Citation Format

Share Document