scholarly journals Antibacterial properties of Kelulut, Tualang and Acacia honey against fourteen clinically-isolated strains of bacteria-infecting wound

2020 ◽  
Author(s):  
Mohd-Amir Mohd ◽  
Raihana Edros ◽  
Norul A. Hamzah
Food Research ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 448-460
Author(s):  
K. Yousof ◽  
Nor-Khaizura M.A.R. ◽  
Nur Hanani Z.A. ◽  
Ismail-Fitry M.R.

The antibacterial activity of honey is mainly credited to its acidity, osmolarity and enzymatic generation of hydrogen peroxide via glucose oxidase. Additional honey components, such as aromatic acids or phenolic compounds, also contribute to the overall antibacterial activity. The level of antibacterial activities found in honey varies with different types of honey, due to mainly the composition, percentage as well as the nature of the sugars present in the honey. This study aimed to evaluate the antibacterial activity of four types of honey, namely Tualang honey (TH1), Tualang honey (TH2), Acacia honey (AH) and Yemeni Sumur honey (YSH). Nine bacterial strains were used. Disc diffusion, well diffusion, minimum inhibitory concentration (MIC), Minimum bactericidal concentration (MBC), and time-kill methods were performed to reveal the antibacterial potential of the selected honey. The MIC values ranged between 12.5 to 50% for both TH1 and YSH while for TH2, and AH it ranged between 25 to 50%. For MBC, it ranged from 25 to 50%. The time-kill in TH1 Staphylococcus aureus (food isolate) showed total inhibition at 6 hrs in 2 X MIC, and for Staphylococcus aureus ATCC 29737 was 3.84 log CFU/g at the 6 hrs. Physicochemical quality of honey resulted as follows: the pH of the honey samples was acidic in nature ranging between 3.69 to 3.94, and the aw of the honey samples were between 0.53 to 0.69. For colour analysis, YSH was observed to has the maximum lightness and yellowness, and TH1 has the maximum redness. While, AH had a minimum lightness, redness, and yellowness.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


2012 ◽  
Vol 27 (5) ◽  
pp. 513-518
Author(s):  
Yu CHEN ◽  
Wen-Rui LI ◽  
Can XU ◽  
Jia-Can SU ◽  
Ming LI ◽  
...  

2020 ◽  
Vol 24 (8) ◽  
pp. 817-854
Author(s):  
Anil Kumar ◽  
Nishtha Saxena ◽  
Arti Mehrotra ◽  
Nivedita Srivastava

Quinolone derivatives have attracted considerable attention due to their medicinal properties. This review covers many synthetic routes of quinolones preparation with their antibacterial properties. Detailed study with structure-activity relationship among quinolone derivatives will be helpful in designing new drugs in this field.


2020 ◽  
Vol 17 (1) ◽  
pp. 71-84
Author(s):  
Riham M. Bokhtia ◽  
Siva S. Panda ◽  
Adel S. Girgis ◽  
Hitesh H. Honkanadavar ◽  
Tarek S. Ibrahim ◽  
...  

Background: Bacterial infections are considered as one of the major global health threats, so it is very essential to design and develop new antibacterial agents to overcome the drawbacks of existing antibacterial agents. Method: The aim of this work is to synthesize a series of new fluoroquinolone-3-carboxamide amino acid conjugates by molecular hybridization. We utilized benzotriazole chemistry to synthesize the desired hybrid conjugates. Result: All the conjugates were synthesized in good yields, characterized, evaluated for their antibacterial activity. The compounds were screened for their antibacterial activity using methods adapted from the Clinical and Laboratory Standards Institute. Synthesized conjugates were tested for activity against medically relevant pathogens; Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27856) Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 19433). Conclusion: The observed antibacterial experimental data indicates the selectivity of our synthesized conjugates against E.Coli. The protecting group on amino acids decreases the antibacterial activity. The synthesized conjugates are non-toxic to the normal cell lines. The experimental data were supported by computational studies.


Sign in / Sign up

Export Citation Format

Share Document