scholarly journals Antibacterial properties of Tualang, Acacia and Yemeni Sumur honey against selected food spoilage bacteria and foodborne pathogens

Food Research ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 448-460
Author(s):  
K. Yousof ◽  
Nor-Khaizura M.A.R. ◽  
Nur Hanani Z.A. ◽  
Ismail-Fitry M.R.

The antibacterial activity of honey is mainly credited to its acidity, osmolarity and enzymatic generation of hydrogen peroxide via glucose oxidase. Additional honey components, such as aromatic acids or phenolic compounds, also contribute to the overall antibacterial activity. The level of antibacterial activities found in honey varies with different types of honey, due to mainly the composition, percentage as well as the nature of the sugars present in the honey. This study aimed to evaluate the antibacterial activity of four types of honey, namely Tualang honey (TH1), Tualang honey (TH2), Acacia honey (AH) and Yemeni Sumur honey (YSH). Nine bacterial strains were used. Disc diffusion, well diffusion, minimum inhibitory concentration (MIC), Minimum bactericidal concentration (MBC), and time-kill methods were performed to reveal the antibacterial potential of the selected honey. The MIC values ranged between 12.5 to 50% for both TH1 and YSH while for TH2, and AH it ranged between 25 to 50%. For MBC, it ranged from 25 to 50%. The time-kill in TH1 Staphylococcus aureus (food isolate) showed total inhibition at 6 hrs in 2 X MIC, and for Staphylococcus aureus ATCC 29737 was 3.84 log CFU/g at the 6 hrs. Physicochemical quality of honey resulted as follows: the pH of the honey samples was acidic in nature ranging between 3.69 to 3.94, and the aw of the honey samples were between 0.53 to 0.69. For colour analysis, YSH was observed to has the maximum lightness and yellowness, and TH1 has the maximum redness. While, AH had a minimum lightness, redness, and yellowness.

2014 ◽  
Vol 875-877 ◽  
pp. 87-90 ◽  
Author(s):  
Chutimon Satirapipathkul ◽  
Tanakan Chatdum

The film-forming potential of isolate of seed polysaccharide fromCassia fistulawas investigated. Increasing the glycerol concentration in the film increased elongation at break, film solubility and water vapor permeability but decreased tensile strength (TS). The film impregnated with the acetone extract ofAtractylodes lanceawas assessed for inhibition ofEscherichia coliandStaphylococcus aureus. The obtained results showed that the films exhibited antibacterial activity against both bacterial strains. Disc-diffusion assay revealed that the film resulted in a larger inhibition zone around the film onStaphylococcus aureusthan it did onEscherichia coliat the same extract concentrations (0.1 to 0.9 wt %). It can be seen that the film has satisfactory physical and antibacterial properties.


2016 ◽  
Vol 60 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lia M. Junie ◽  
Mihaela L. Vică ◽  
Mirel Glevitzky ◽  
Horea V. Matei

AbstractThe first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).


10.3823/854 ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad A. Alkafaween ◽  
Hamid A. Nagi Al-Jamal ◽  
Abu Bakar Mohmd Hilmi

Background: The purpose of this study was to investigate antibacterial activity of three varieties of Malaysian honey; Tualang honey (TH), Gelam honey (GH), and Acacia honey (AH) against Escherichia coli. Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the honey samples against E. coli were determined by the broth microdilution assay in the presence and absence of catalase enzyme. The mode of inhibition of honey samples against E. coli was investigated by the effect of time on viability. Impacts of the honeys on the expression profiles of the selected genes of E. coli were examined using RT-qPCR analysis. Results: The results showed that TH and GH honey possessed lowest MIC and MBC values against E. coli with 20% and 25% (w/v) respectively. Highest MIC and MBC values were observed by AH honey against E. coli with 25% (w/v) and 50% (w/v) values respectively. Among the tested honeys, TH and GH exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. Time–kill curve demonstrated a bactericidal rather than a bacteriostatic effect; with a 2-log reduction estimated within 540 min. Viable cells were not recovered after 9 hours exposure to MIC of all honey-treated. The RT-qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Conclusion: This study demonstrates that Malaysian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.


2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 783-799
Author(s):  
Maryam Ariannezhad ◽  
Davood Habibi ◽  
Somayyeh Heydari ◽  
Vahideh Khorramabadi

A new magnetic supported manganese-based coordination complex (Fe3O4@SiO2@CPTMS@MBOL@ Mn) was prepared in consecutive stages and characterized via various techniques (VSM, SEM, TEM, XRD, FT-IR, EDX, TG-DTA, and ICP). To evaluate its application, it was used for synthesis of divers Indazolophthalazinetriones in a simple procedure via the one-pot three-component condensation reaction of aldehydes, dimedone, and phthalhydrazide in ethanol under reflux conditions. The Mn catalyst can be recycled without any noticeable loss in catalytic activity. Additionally, the antibacterial properties of the nano-catalyst were studied against some bacterial strains.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammed El Fal ◽  
Youssef Ramli ◽  
Abdelfettah Zerzouf ◽  
Ahmed Talbaoui ◽  
Youssef Bakri ◽  
...  

New heterocyclic compounds spiroderivatives of allopurinol of biological interest were prepared from allopurinol via thionation and 1,3-dipolar cycloaddition and were produced in high to excellent yields. These compounds were characterized on the basis of spectral and spectroscopic data (1H NMR,13C, IR, and MS). The antibacterial activity of the synthesized products was studied using bacterial strains:Staphylococcus aureus,Enterococcus faecalis,Escherichia coli, andPseudomonas aeruginosa. Compounds having an ethyl group showed the best activity with MIC value of 31.25 µg/mL againstStaphylococcus aureusandStreptococcus fasciens.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3109 ◽  
Author(s):  
Andres Bernal-Ballen ◽  
Jorge Lopez-Garcia ◽  
Martha-Andrea Merchan-Merchan ◽  
Marian Lehocky

Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Antonio Carlos Pereira de Menezes Filho ◽  
Matheus Vinícius Abadia Ventura ◽  
Carlos Frederico de Souza Castro

Tibouchina granulosa is a species that blooms annually in several regions of Brazil. This species is still little explored in terms of phytocompounds in all organs of this plant, especially the floral organ. Flowers of T. granulosa were collected in the municipality of Rio Verde, Goiás, Brazil, in 2021. The hydroethanolic floral extract was prepared by maceration and qualitative phytochemical (colorimetric reactions and salt formation) and antibacterial analyzes performed and the results expressed in millimeters of inhibition at different concentrations in mg mL-1. Several phytochemical classes were observed with positive results, especially for alkaloids, phenolics, oxylates, saponins, carbohydrates and tannins. As for the bacterial assay, potential antibacterial activity was observed for all bacterial strains tested, except for Salmonella serovar Thyphymurium and serovar Enteritidis. Expressive inhibitions were observed for Enterococcus faecalis > Pseudomonas aeruginosa > Staphylococcus aureus and Escherichia coli at the highest concentrations between 100-50 mg mL-1. The floral extract of Tibouchina granulosa showed phytotherapeutic potential with the presence of several phytochemical groups and expressive antibacterial activity.


Author(s):  
Haribhai Rabari ◽  
Hetal Vankar ◽  
Beenkumar Prajapati

The emergence of multidrug microbial resistance is the main challenges that the modern scientists have so far been facing in the recent era. In this respect, new series of drug classes having potential to give antimicrobial effect have been synthesized. A new series of 5- substituted-1,10 b-dihydroimidazole[1,2-c]quinazoline derivatives 8a-e have been synthesized and screened for antibacterial activity and antifungal activity. Synthesized derivatives were characterized by IR, MASS and 1H-NMR spectroscopy. Synthesized compounds show good activity, which was comparable to the standard drug and it can be useful for the further clinical study. Antibacterial activity was evaluated against four different pathogenic bacterial strains like Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudo-monas aeruginosa. Among the screened compounds, 8e show good antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC of 50 and 100 μg/ml respectively. Antifungal activity was evaluated  against two strains of fungi. Among the synthesized derivates, compound 8c was emerged out as the potent antifungal compound against Candida albicans and Aspergillus niger with MIC of 25 μg/ml and 75μg/ml respectively. Compound 8e also shows good antifungal activity with MIC of 50 μg/ml against both Candida albicans and Aspergillus niger. The overall results of this study indicated that  synthesized quinazoline derivatives had the potential to act as an antibacterial and antifungal agent, hence further investigation is warranted.


Sign in / Sign up

Export Citation Format

Share Document