Algorithmization and application of constitutive equations for modeling the plane stress state of concrete

2020 ◽  
Author(s):  
Petr Král ◽  
Jiří Kala ◽  
Petr Hradil
2015 ◽  
Vol 111 ◽  
pp. 386-389 ◽  
Author(s):  
Nikolay I. Karpenko ◽  
Sergey N. Karpenko ◽  
Aleksey N. Petrov ◽  
Zakhar A. Voronin ◽  
Anna V. Evseeva

Author(s):  
Babak Haghpanah ◽  
Jim Papadopoulos ◽  
Davood Mousanezhad ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri

An approach to obtain analytical closed-form expressions for the macroscopic ‘buckling strength’ of various two-dimensional cellular structures is presented. The method is based on classical beam-column end-moment behaviour expressed in a matrix form. It is applied to sample honeycombs with square, triangular and hexagonal unit cells to determine their buckling strength under a general macroscopic in-plane stress state. The results were verified using finite-element Eigenvalue analysis.


Author(s):  
Alexander Zvorykin ◽  
Roman Popov ◽  
Mykola Bobyr ◽  
Igor Pioro

Analysis of engineering approach to the operational life forecasting for constructional elements with respect to the low-cycle fatigue is carried out. Applicability limits for a hypothesis on existence of generalized cyclic-deforming diagram in case of complex low-cycle loading (deforming) are shown. It is determined, that under condition of plane-stress state and piecewise-broken trajectories of cycle loading with stresses and deformation checking the cyclic deforming diagram is united in limits of deformations, which are not exceeded 10 values of deformation corresponding material yield point. Generalized kinematic equation of material damageability is described. The method of damageability parameter utilization for increasing of accuracy calculation of structural elements low-cycle fatigue by using the effective coefficients of stresses and deformations taking into account the damageability parameter is given.


2019 ◽  
Vol 6 (8) ◽  
pp. 085602 ◽  
Author(s):  
Huasheng Zheng ◽  
Wen An ◽  
Jinwei Wu ◽  
Zhengshan Zhao ◽  
Shengyu Xiao

Sign in / Sign up

Export Citation Format

Share Document