Magneto-optical effects in 2D plasmonic gratings with various types of ordering

2020 ◽  
Author(s):  
Andrey A. Dotsenko ◽  
Andrey N. Kalish ◽  
Mikhail A. Kozhaev ◽  
Daria O. Ignatyeva ◽  
Venu Gopal Achanta ◽  
...  
2005 ◽  
Vol 71 (3) ◽  
Author(s):  
A. Migalska-Zalas ◽  
B. Sahraoui ◽  
I. V. Kityk ◽  
S. Tkaczyk ◽  
V. Yuvshenko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis V. Novitsky ◽  
Dmitry Lyakhov ◽  
Dominik Michels ◽  
Dmitrii Redka ◽  
Alexander A. Pavlov ◽  
...  

AbstractUnique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Hong Shen ◽  
Longkun Yu ◽  
Xu Jing ◽  
Fengfu Tan

The turbulence moment of order m (μm) is defined as the refractive index structure constant Cn2 integrated over the whole path z with path-weighting function zm. Optical effects of atmospheric turbulence are directly related to turbulence moments. To evaluate the optical effects of atmospheric turbulence, it is necessary to measure the turbulence moment. It is well known that zero-order moments of turbulence (μ0) and five-thirds-order moments of turbulence (μ5/3), which correspond to the seeing and the isoplanatic angles, respectively, have been monitored as routine parameters in astronomical site testing. However, the direct measurement of second-order moments of turbulence (μ2) of the whole layer atmosphere has not been reported. Using a star as the light source, it has been found that μ2 can be measured through the covariance of the irradiance in two receiver apertures with suitable aperture size and aperture separation. Numerical results show that the theoretical error of this novel method is negligible in all the typical turbulence models. This method enabled us to monitor μ2 as a routine parameter in astronomical site testing, which is helpful to understand the characteristics of atmospheric turbulence better combined with μ0 and μ5/3.


2021 ◽  
Vol 9 (9) ◽  
pp. 3052-3057
Author(s):  
Jerzy J. Langer ◽  
Ewelina Frąckowiak

H+LEDs are light emitting devices based on a protonic p–n junction; now with no organic polymers. The unique are non-linear optical effects: collimated light beams and stimulated Raman scattering (SRS), observed while generating intense light pulses.


Author(s):  
Arpan Dutta ◽  
Tarmo Nuutinen ◽  
Khairul Alam ◽  
Antti Matikainen ◽  
Peng Li ◽  
...  

Abstract Plasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We designed multiple gratings having different fill factors using finite-difference time-domain (FDTD) simulations to incorporate different degrees of spectral detunings in their reflection dips from our Raman excitation (488 nm). Our numerical studies suggested that by tuning the spectral position of the optical resonance of the grating, via modifying their fill factor, we could optimize the achievable SERS enhancement. Moreover, by changing the polarization of the excitation light from transverse-magnetic to transverse-electric, we can disable the optical resonance of the gratings resulting in negligible SERS performance. To verify this, we fabricated and optically characterized the modelled gratings and ensured the presence of the desired detunings in their optical responses. Our Raman analysis on riboflavin confirmed that the higher overlap between the grating resonance and the intended Raman excitation yields stronger Raman enhancement only for TM polarized light. Our findings provide insight on the development of fabrication-friendly plasmonic gratings for optimal intensification of the Raman signal with an extra degree of control through the polarization of the excitation light. This feature enables studying Raman signal of exactly the same molecules with and without electromagnetic SERS enhancements, just by changing the polarization of the excitation, and thereby permits detailed studies on the selection rules and the chemical enhancements possibly involved in SERS.


2019 ◽  
Vol 5 (9) ◽  
pp. 72
Author(s):  
Kamel Mouhoubi ◽  
Vincent Detalle ◽  
Jean-Marc Vallet ◽  
Jean-Luc Bodnar

Within the framework of conservation and assistance for the restoration of cultural property, a method of analysis assistance has been developed to help in the restoration of cultural heritage. Several collaborations have already demonstrated the possibility of defects detection (delamination, salts) in murals paintings using stimulated infrared thermography. One of the difficulties encountered with infrared thermography applied to the analysis of works of art is the remanence of the pictorial layer. This difficulty can sometimes induce detection artifacts and false positives. A method of thermograms post-processing called PPT (pulse phase thermography) is described. The possibilities offered by the PPT in terms of reducing the optical effects associated with the pictorial layer are highlighted first with a simulation, and then through experiments. This approach can significantly improve the study of painted works of art such as wall paintings.


Sign in / Sign up

Export Citation Format

Share Document