On the possibility of magnetoacoustic evaluation of the resulting strengthening of medium-carbon steel as a result of two-stage plastic deformation

2020 ◽  
Author(s):  
Evgeny Serbin ◽  
Vladimir Kostin ◽  
Nikita Konev
1999 ◽  
Vol 41 (3) ◽  
pp. 229-235 ◽  
Author(s):  
I Madariaga ◽  
I Gutiérrez ◽  
C Garcı́a-de Andrés ◽  
C Capdevila

2016 ◽  
Vol 258 ◽  
pp. 599-602
Author(s):  
Rostislav Kawulok ◽  
Ivo Schindler ◽  
Petr Kawulok ◽  
Janusz Dänemark ◽  
Petr Opěla ◽  
...  

The CCT and DCCT diagrams of steel C60 (with approx. 0.6 % C) were constructed on the basis of dilatation tests with and/or without an influence of the previous deformation and they were then compared, order to make an evaluation of the influence of the previous deformation on the phase transformation kinetics. For the execution of the experiment, the dilatation module of the plastometer Gleeble 3800 was used. The accuracy of the diagrams was faced with metallographic analyses and measurements. The previous deformation expressly retarded a bainite transformation and slightly accelerated ferrite and pearlite transformations. The martensite start temperature was practically not influenced by the previous deformation; however, the applied deformation caused the creation of the martensite at lower cooling rates.


2007 ◽  
Vol 353-358 ◽  
pp. 575-578
Author(s):  
Bin Xu ◽  
Le Yang ◽  
Shi Bo Xing ◽  
Li Li

In order to increase boronizing speed without decreasing the hardness of boride layer, the effect of plastic deformation at room temperature on powder RE-chrome-boronizing for a medium carbon steel (steel 45), in which boronizing plays a main role, was studied in this paper. The cold plastic deformation (CPD), whether compressing or shot-peening, can increase boronizing speed. Meanwhile, the boride layer can also retain its high microhardness (1 300―1 900HV0.1) with low brittleness. The layer depth achieved for a given heating time increases with increasing CPD degree on the steel. The analyses show that boronizing kinetics in the RE-chrome-boronizing (RE-Cr-B) samples with CPD can be enhanced.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 585
Author(s):  
Marcel Kuruc ◽  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Martin Necpal ◽  
Vladimír Šimna ◽  
...  

The paper deals with the issue of cutting zone and chip compression. The aim was to analyse the microstructure transverse section of the cutting zone on a metallographic cut, due to determined values of chip compression and plastic deformation, which affect the cutting process efficiency. The tested cutting tool material was coated with cemented carbide. The selected workpiece materials were C45 medium carbon steel of ISO grade and 62SiMnCr4 tool steel of ISO (W.Nr. 1.2101) grade. In the experiments, a DMG CTX alpha 500 turning centre was used. The cutting speed and feed were varied, and the depth of the cut was kept constant during the turning. The plastic deformation and chip compression determine the efficiency of the cutting process. The higher compression requires more work to perform the process and, therefore, it requires more energy for doing so. With the increase of the cutting speed, the deformation for C45 steel is decreased. The rapid deformation reduction was observed when the cutting speed was increased from 145 m/min to 180 m/min. Generally, deformation is decreasing with the increase of the feed. Only at a cutting speed of 145 m/min was the deformation elevation observed, when the feed was increased from 0.4 mm to 0.6 mm. During the turning of the 62SiMnCr4 tool steel we observed an error value at a cutting speed of 145 m/min and a feed of 0.4 mm was the middle cutting parameter. However, feed dependence was clear: With an increase of the feed, the plastic deformation was decreasing. This decreasing was more rapid with the increasing of the cutting speed. Besides plastic deformation, there was analysed chip compression as well. With the increasing of the cutting speed, there was a decrease of the chip compression. Due to a lack of information in the area of the chip compression and the plastic deformation in the cutting process, we decided to investigate the cutting zone for the turning of tool steels 62SiMnCr4, which was compared with the reference steel C45. The results could be applied to increase the efficiency of the process and improvement of the surface integrity.


Sign in / Sign up

Export Citation Format

Share Document