Rapid tooling in investment casting: Investigation on surface finish of mould produced with 3D printed patterns

2021 ◽  
Author(s):  
Akash Vyas ◽  
Omkar Mushriff ◽  
Aman Rochani ◽  
Tejas Doshi ◽  
Shivam Gupta ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1318
Author(s):  
Mariusz Deja ◽  
Dawid Zieliński ◽  
Aini Zuhra Abdul Kadir ◽  
Siti Nur Humaira

High requirements imposed by the competitive industrial environment determine the development directions of applied manufacturing methods. 3D printing technology, also known as additive manufacturing (AM), currently being one of the most dynamically developing production methods, is increasingly used in many different areas of industry. Nowadays, apart from the possibility of making prototypes of future products, AM is also used to produce fully functional machine parts, which is known as Rapid Manufacturing and also Rapid Tooling. Rapid Manufacturing refers to the ability of the software automation to rapidly accelerate the manufacturing process, while Rapid Tooling means that a tool is involved in order to accelerate the process. Abrasive processes are widely used in many industries, especially for machining hard and brittle materials such as advanced ceramics. This paper presents a review on advances and trends in contemporary abrasive machining related to the application of innovative 3D printed abrasive tools. Examples of abrasive tools made with the use of currently leading AM methods and their impact on the obtained machining results were indicated. The analyzed research works indicate the great potential and usefulness of the new constructions of the abrasive tools made by incremental technologies. Furthermore, the potential and limitations of currently used 3D printed abrasive tools, as well as the directions of their further development are indicated.


Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


2019 ◽  
Vol 34 ◽  
pp. 683-694 ◽  
Author(s):  
Jiayi Wang ◽  
Santosh Reddy Sama ◽  
Paul C. Lynch ◽  
Guha Manogharan

2016 ◽  
Vol 45 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Rupinder Singh ◽  
Sunpreet Singh

High level surface finish (SF) achievement is one of the major advantages of conventional investment casting process. Not much work hitherto has been reported for modeling the SF in conventional investment casting of industrial components. In the present study application of dimensionless analysis, has been made for developing a mathematical model for SF. Three input process parameters (namely: molten metal pouring temperature (PT), slurry layer’s combination (LC) and volume/surface-area (V/A) ratio of cast components) were judicially selected to give SF as output. This study provide main effects of these input parameters on SFand shed light on the SF mechanism in conventional investment casting. The comparison of mathematical model with experimental results has been made for validation of model.


2019 ◽  
Vol 11 (1) ◽  
pp. 14-23 ◽  
Author(s):  
W. H. Ho ◽  
I. J. Tshimanga ◽  
M. N. Ngoepe ◽  
M. C. Jermy ◽  
P. H. Geoghegan

Abstract Purpose Fabrication of a suitable flow model or phantom is critical to the study of biomedical fluid dynamics using optical flow visualization and measurement methods. The main difficulties arise from the optical properties of the model material, accuracy of the geometry and ease of fabrication. Methods Conventionally an investment casting method has been used, but recently advancements in additive manufacturing techniques such as 3D printing have allowed the flow model to be printed directly with minimal post-processing steps. This study presents results of an investigation into the feasibility of fabrication of such models suitable for particle image velocimetry (PIV) using a common 3D printing Stereolithography process and photopolymer resin. Results An idealised geometry of a cerebral aneurysm was printed to demonstrate its applicability for PIV experimentation. The material was shown to have a refractive index of 1.51, which can be refractive matched with a mixture of de-ionised water with ammonium thiocyanate (NH4SCN). The images were of a quality that after applying common PIV pre-processing techniques and a PIV cross-correlation algorithm, the results produced were consistent within the aneurysm when compared to previous studies. Conclusions This study presents an alternative low-cost option for 3D printing of a flow phantom suitable for flow visualization simulations. The use of 3D printed flow phantoms reduces the complexity, time and effort required compared to conventional investment casting methods by removing the necessity of a multi-part process required with investment casting techniques.


2009 ◽  
Vol 14 (S1) ◽  
pp. 108-115 ◽  
Author(s):  
Sadegh Rahmati ◽  
Mohamad Reza Rezaei ◽  
Javad Akbari

2018 ◽  
Vol 1 (90) ◽  
pp. 25-32 ◽  
Author(s):  
Ts. Dikova ◽  
Dzh. Dzhendov ◽  
Iv. Katreva ◽  
Ts. Tonchev

Purpose: of this paper is to investigate the accuracy of Co-Cr dental bridges, manufactured using 3D printed cast patterns. Design/methodology/approach: Four-unit dental bridges are fabricated from the alloys i-Alloy and Biosil-f by lost-wax process. The polymeric cast patterns are 3D printed with different layer’s thickness (13 μm, 35 μm and 50 μm). Two 3D printers are used: stereolithographic “Rapidshape D30” and ink-jet “Solidscape 66+”. The geometrical and fitting accuracy as well as the surface roughness are investigated. Findings: It is established that Co-Cr bridges, casted from 3D printed patterns with 50 μm layer thickness, characterize with the largest dimensions – 3.30%-9.14% larger than those of the base model. Decreasing the layer thickness leads to dimensional reduction. The dimensions of the bridges, casted on patterns with 13 μm layer thickness, are 0.17%-2.86% smaller compared to the primary model. The average roughness deviation Ra of the surface of Co-Cr bridges, manufactured using 3D printed patterns, is 3-4 times higher in comparison to the bridge-base model. The greater the layer thickness of the patterns, the higher Ra of the bridges. The silicone replica test shows 0.1-0.2 mm irregular gap between the bridge retainers and abutments of the cast patterns and Co-Cr bridges. Research limitations/implications: Highly precise prosthetic constructions, casted from 3D printed patterns, can be produced only if the specific features of the 3D printed objects are taken in consideration. Practical implications: Present research has shown that the lower the thickness of the printed layer of cast patterns, the higher the dimensional accuracy and the lower the surface roughness. Originality/value: The findings in this study will help specialist in dental clinics and laboratories to choose the right equipment and optimal technological regimes for production of cast patterns with high accuracy and low surface roughness for casting of precise dental constructions.


2014 ◽  
Vol 970 ◽  
pp. 155-165 ◽  
Author(s):  
Sambasiva Rao Addanki ◽  
Medha A. Dharap ◽  
Jonnalagedda V.L. Venkatesh

Fused Deposition Modeling (FDM) process can be used to produce the rapid tooling directly or indirectly. However, rapid tooling application demands good surface finish since the poor surface finish of FDM parts has become a limitation for its tool application. So there is need to improve the surface finish of FDM made tools. In this study, surface roughness of FDM tools are drastically reduced by a post processing technique called chemical treatment process. Surface finish was improved by filling the gap between layers by diffusion of parent material. Thus FDM made tools can be used as direct as well as indirect tools after the chemical treatment. Comparative study was made between Silicon Rubber Moulding and FDM Tooling towards the cost, time, life of mould, quality and feasibility aspects. It was found that FDM tooling is more economical, easy to use, reduced cycle time, improved quality, long life of mould and more feasibility towards complex parts etc.


Sign in / Sign up

Export Citation Format

Share Document