scholarly journals Applications of Additively Manufactured Tools in Abrasive Machining—A Literature Review

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1318
Author(s):  
Mariusz Deja ◽  
Dawid Zieliński ◽  
Aini Zuhra Abdul Kadir ◽  
Siti Nur Humaira

High requirements imposed by the competitive industrial environment determine the development directions of applied manufacturing methods. 3D printing technology, also known as additive manufacturing (AM), currently being one of the most dynamically developing production methods, is increasingly used in many different areas of industry. Nowadays, apart from the possibility of making prototypes of future products, AM is also used to produce fully functional machine parts, which is known as Rapid Manufacturing and also Rapid Tooling. Rapid Manufacturing refers to the ability of the software automation to rapidly accelerate the manufacturing process, while Rapid Tooling means that a tool is involved in order to accelerate the process. Abrasive processes are widely used in many industries, especially for machining hard and brittle materials such as advanced ceramics. This paper presents a review on advances and trends in contemporary abrasive machining related to the application of innovative 3D printed abrasive tools. Examples of abrasive tools made with the use of currently leading AM methods and their impact on the obtained machining results were indicated. The analyzed research works indicate the great potential and usefulness of the new constructions of the abrasive tools made by incremental technologies. Furthermore, the potential and limitations of currently used 3D printed abrasive tools, as well as the directions of their further development are indicated.

2020 ◽  
Vol 4 (141) ◽  
pp. 114-122
Author(s):  
DAR’YA LEBEDEVA ◽  
◽  
ANNA KARPUNICHEVA

Large forces and significant thermal effects are created on the rolls when rolling sheets. The higher the stability of the rolls, the less downtime during their rerolling and higher productivity. (Research purpose) The research purpose is in analyzing the ways of restoring rolls and choose the most appropriate method for restoring these parts. (Materials and methods) The article presents the analysis of the scientific and technical literature on the topic of rolling production, methods for restoring large-sized machine parts of machine-building and metallurgical industries that work in difficult conditions and are subject to a high degree of wear. Authors try to solve the problem by means of comparative and logical analysis based on theoretical and empirical methods of scientific research. (Results and discussion) The article presents two groups of methods for restoring rolled rolls: banding and surfacing the working layer of the roll. Authors have analyzed each method in terms of technology, equipment, and feasibility. The article presents the advantages and disadvantages of the methods under consideration. (Conclusions) The most acceptable way to restore parts with a high degree of wear is surfacing. It is most efficient to apply submerged surfacing using an additional hot additive. Such surfacing, despite some complication of the equipment design, allows to deposit the metal on the roll with low heat input and in most cases in one pass. Surfacing using an additional hot additive allows to increase the productivity of the process by up to 250 percent while reducing the penetration depth by 2-3 times and saving energy by up to 40 percent.


2021 ◽  
Vol 410 ◽  
pp. 262-268
Author(s):  
Vyacheslav M. Shumyacher ◽  
Sergey A. Kryukov ◽  
Natal'ya V. Baidakova

One of the critical physical and mechanical properties of metals and alloys is the suitability for abrasive machining. Machining by abrasive tools is the final operation that sets the desired macro-geometry parameters of processed blanks and microgeometry parameters of processed surfaces such as roughness and length of a bearing surface. Abrasive machining determines the most important physical and mechanical parameters of a blank surface layer, i.e. stresses, phase composition, structure. Machinability by abrasive tools depends on the machining performance affected both by the blank material properties and various processing factors. In our previous studies, we proved that during abrasive machining the metal microvolume affected by abrasive grains accumulates energy. This energy is used for metal dispersion and is converted into heat. According to the theoretical studies described herein, one may note the absence of a reliable and scientifically valid method as well as measuring instruments to determine the machinability of metals and alloys by abrasive tools. For this reason, we suggested a method simulating the effect the multiple abrasive grains produce in a grinding wheel, and enabling us to identify machinability of metals and alloys, select the most efficient abrasive materials for machining of the same, and form the basis for development of effective grinding operations.


Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


2007 ◽  
Vol 39 (9-10) ◽  
pp. 898-904 ◽  
Author(s):  
E. Pessard ◽  
P. Mognol ◽  
J. Y. Hascoët ◽  
C. Gerometta

Author(s):  
Azhar Equbal ◽  
Anoop Kumar Sood ◽  
Mohammad Shamim

<p>To solve the tool-making bottleneck, it is fundamental to integrate rapid manufacturing methodologies for rapid tooling, which reduces the lead-time to manufacture the tools while improving their quality. Rapid tooling (RT) is a progression of rapid prototyping (RP). RT is the art of producing tooling directly from CAD models of the part. RT technology plays a major role in increasing the pace of tooling development. This paper describes the role of RT according to the current market situation. An ample review of examples of rapid tooling indicates a new trend of tooling practice. This trend in manufacturing based on rapid prototyping and rapid tooling has already had a dynamic impact on the engineering environment.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michał Ziemczonok ◽  
Arkadiusz Kuś ◽  
Piotr Wasylczyk ◽  
Małgorzata Kujawińska

AbstractAs the 3D quantitative phase imaging (QPI) methods mature, their further development calls for reliable tools and methods to characterize and compare their metrological parameters. We use refractive index engineering during two-photon laser photolithography to fabricate a life-scale phantom of a biological cell with internal structures that mimic optical and structural properties of mammalian cells. After verification with a number of reference techniques, the phantom is used to characterize the performance of a limited-angle holographic tomography microscope.


2020 ◽  
Author(s):  
Adrian Butler ◽  
Tom Rowan ◽  
Alex Colyer

&lt;div&gt; &lt;p&gt;The work sets out a method and evaluates the accuracy of a 3D printed turbine flow meter for open channel and pipe flow; that can be optimised for different situations.&amp;#160;&amp;#160;The motivation for this project was to create flow meters that are low cost and available to community groups and interested individuals, this work was conducted as part of the CAMELLIA project (Community Water Management for a Liveable London).&amp;#160;&amp;#160;The flowmeters have been trialled in a number of locations by users with different skill sets and technical know-how.&amp;#160;&amp;#160;Hall effect sensors have been coupled with consumer grade electronics to develop the most opensource system possible.&amp;#160;&amp;#160;This work has taken advantage of recent advances in DLP printing, allowing for greater resolution at a lower cost than previous generations of 3D printers.&amp;#160;&amp;#160;This is combined with work developed by the Open Prop software team, has enabled user customisable sensors to be built.&amp;#160;&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;The presented&amp;#160;work&amp;#160;aims&amp;#160;to create an&amp;#160;opensource, low cost and easy to use solution to&amp;#160;some&amp;#160;flow&amp;#160;monitoring&amp;#160;problems.&amp;#160;&amp;#160;This paper details the lessons learnt and successes of this approach; it&amp;#160;aims to create a basis for which further development and deployment of these sensors can be achieved.&amp;#160;&amp;#160;&lt;/p&gt; &lt;/div&gt;


Author(s):  
Mihaela E. Lupeanu ◽  
Hadley Brooks ◽  
Allan E. W. Rennie ◽  
H. Kursat Celik ◽  
Corneliu Neagu ◽  
...  

The pressure of time, quality and cost, together with increasing product variety, more customised products and worldwide competition is driving technology development and implementation in the area of Rapid Manufacturing (RM). Traditionally, the manufacture of tooling for both prototype parts and production components represents one of the longest and most costly phases in the development of most new products. The cost and time implications of the tooling process are particularly problematic for low-volume products aimed at niche markets, or alternatively for rapidly changing high-volume products. Rapid Prototyping (RP) and Rapid Tooling (RT) have the potential to dramatically shorten the time required to produce functional prototypes or products. Functional Analysis (FA) plays a key role in the design process of the actual tools, allowing for innovative solutions that can be achieved with RP and RT. This paper presents a FA methodology to design for manufacture (DFM) based on RP- and RT-specific characteristics, aimed at improving process efficiency, streamline energy consumption, use of volume material, usage of structural innovative lightweight materials, decrease overall costs and improve product quality. Design for Rapid Manufacturing (DFRM) allows for geometric freedom, leading to changes of the overall design process, thus enhancing the FA process. FA begins with stating the need, in a DFRM case that translates into diagnosis, the determination of the manufacturability of the present product and comparison with similar products on the market. Setting objectives, in terms of production costs, quality, flexibility, risk, lead-time, efficiency, and environment are other milestones in FA. Actual function definition involves defining the main functions of the product and their interactions. Clarifying the evaluation parameters, setting criteria levels and technical dimensioning is done for each of the main product functions. The conceptual design process then follows a top-down sequence: corporate, family, structural and component levels. Evaluation and selection of the optimal concept resulting from the FA consists of assessing the manufacturability of the proposed concepts in terms of the DFM objectives. The selected best fit concept is translated to design in the last stage, when the chosen concept is communicated to the development team. The detailed design is carried out in parallel to marketing and product development. Targeted FA is shown to enable generation of innovative solutions, while improving manufacturability. The present research stands as a starting point in the development of product design methodologies that use RP and RT applications for manufacturing physical products.


Sign in / Sign up

Export Citation Format

Share Document