Development of Rapid Tooling for Investment Casting Using Fused Deposition Modeling Process

2014 ◽  
Vol 970 ◽  
pp. 155-165 ◽  
Author(s):  
Sambasiva Rao Addanki ◽  
Medha A. Dharap ◽  
Jonnalagedda V.L. Venkatesh

Fused Deposition Modeling (FDM) process can be used to produce the rapid tooling directly or indirectly. However, rapid tooling application demands good surface finish since the poor surface finish of FDM parts has become a limitation for its tool application. So there is need to improve the surface finish of FDM made tools. In this study, surface roughness of FDM tools are drastically reduced by a post processing technique called chemical treatment process. Surface finish was improved by filling the gap between layers by diffusion of parent material. Thus FDM made tools can be used as direct as well as indirect tools after the chemical treatment. Comparative study was made between Silicon Rubber Moulding and FDM Tooling towards the cost, time, life of mould, quality and feasibility aspects. It was found that FDM tooling is more economical, easy to use, reduced cycle time, improved quality, long life of mould and more feasibility towards complex parts etc.

2015 ◽  
Vol 761 ◽  
pp. 329-332 ◽  
Author(s):  
S. Maidin ◽  
Khairul Fahmi Abdul Aziz ◽  
M.K. Muhamad ◽  
E. Pei

Fused deposition modeling (FDM) is an additive manufacturing (AM) process that has an economical advantage compared to other AM processes. However, its biggest drawback is that it requires post processing to achieve a good surface finish. Ultrasound has been applied in various conventional machining processes and produces a good surface finish. However, the application of ultrasound to AM has not been sufficiently explored. This research aims to investigate the application of using ultrasound technology for a desktop FDM system. The idea is to transmit high vibration from the ultrasonic transducer to the FDM system's nozzle, and the objective is to examine whether the nozzle is able to withstand the high vibration being transmitted. Computer-aided design (CAD) software used to develop the 3D model of the extrusion nozzle component and a computer-aided engineering (CAE) software was used to perform static and vibration analysis. A frequency range of 20 to 30kHz and 30 to 40kHz was applied to the nozzle and it was found that the nozzle was able to withstand frequencies up to 40 kHz of vibration. In addition, the lowest Factor of Safety (FoS) obtained was 18.8975, concluding that the nozzle of FDM can withstand the high vibration transmitted from the ultrasonic transducer.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3700
Author(s):  
Patrich Ferretti ◽  
Gian Maria Santi ◽  
Christian Leon-Cardenas ◽  
Marco Freddi ◽  
Giampiero Donnici ◽  
...  

Fused Deposition Modeling (FDM) 3D printing is the most widespread technology in additive manufacturing worldwide that thanks to its low costs, finished component applications, and the production process of other parts. The need for lighter and higher-performance components has led to an increased usage of polymeric matrix composites in many fields ranging from automotive to aerospace. The molds used to manufacture these components are made with different technologies, depending on the number of pieces to be made. Usually, they are fiberglass molds with a thin layer of gelcoat to lower the surface roughness and obtain a smooth final surface of the component. Alternatively, they are made from metal, thus making a single carbon fiber prototype very expensive due to the mold build. Making the mold using FDM technology can be a smart solution to reduce costs, but due to the layer deposition process, the roughness is quite high. The surface can be improved by reducing the layer height, but it is still not possible to reach the same degree of surface finish of metallic or gelcoat molds without the use of fillers. Thermoplastic polymers, also used in the FDM process, are generally soluble in specific solvents. This aspect can be exploited to perform chemical smoothing of the external surface of a component. The combination of FDM and chemical smoothing can be a solution to produce low-cost molds with a very good surface finish.


2014 ◽  
Vol 808 ◽  
pp. 103-108 ◽  
Author(s):  
Harish Kumar Garg ◽  
Rupinder Singh

The impact of Rapid Prototyping (RP) on the future engineering and manufacturing will undoubtedly be widespread .It has variety of applications which include the manufacture of prototypes know as rapid prototyping, tool cores and cavities know as rapid tooling and in the manufacture of patterns for a range of casting processes known as rapid casting. In the proposed research work, fused deposition modeling (FDM) technique of RP will be used for development of a tool for direct application using Rapid tooling. The research work includes development of new hybrid feedstock filament of Fe – Nylon6 composite material for the FDM machine which will be suitable for the machine in its existing setup. The feedstock filament will have the desired mechanical thermal and rheological properties as desired for Rapid Tooling applications. The proposed feedstock material will be ferromagnetic in nature and can find wide application in industrial applications.


Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This work is focused on the experimental investigations for wear properties of rapid tooling with nano scale fillers for grinding applications. The rapid tooling has been prepared by using composite material feed stock filament (consisting of Nylon6 as a binder, reinforced with biocompatible nano scaled Al2O3 particles on fused deposition modeling (FDM) for the development of grinding wheel having customized wear resistant properties. A comparative study has been conducted under dry sliding conditions in order to understand the tribological characteristics of FDM prints of composite material and commercially used acrylonitrile butadiene styrene (ABS) material. This study also highlights the various wear mechanisms (such as adhesive, fatigue and abrasive) encountered with newly prepared composite material while grinding. The FDM printed parts of proposed composite material feedstock filament are more suitable for grinding applications especially in clinical dentistry.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Turki Alamro ◽  
Mohammed Yunus ◽  
Rami Alfattani ◽  
Ibrahim A. Alnaser

The role of rapid tooling (RT) in additive manufacturing (AM) seems essential in improving and spreading out the vista of manufacturing proficiency. In this article, attempts were made to discover the feasibility and the accomplishments of the RT electrode in the field of electro-discharge machining (EDM). Fused deposition modeling (FDM) is one of the AM processes adopted to fabricate the EDM electrode prototype by coating with copper. The copper is deposited on FDM-built ABS plastic component for about 1 mm through thick electroplating. The copper-coated FDM (CCF) and solid copper (SC) electrodes are used to conduct experiments on a die-sinking EDM machine using tool alloy steel as a workpiece. The CCF polymer electrode can be efficiently used in EDM operations as the build time of any complex shape was substantially reduced. However, the material removal rate (MRR) is far less than that of the SC electrode. It is recommended that the CCF electrode is used for semifinishing and finishing operations in which MRR happens to be less. However, CCF can get spoiled as high temperatures are generated on the machining tool, and the plastic core hardly sustains such high temperatures.


Sign in / Sign up

Export Citation Format

Share Document