scholarly journals Physical properties of low energy consumption fired industrial waste-clay bricks from cockle shells and soda lime silica glass

2021 ◽  
Author(s):  
Rabiatul Adawiyah Abdul Wahab ◽  
Maryam Mohammad ◽  
Mazlini Mazlan ◽  
Mohammad Aminudin Mohd Razali ◽  
Nur Arina Mat Rusni ◽  
...  
1964 ◽  
Vol 36 (12) ◽  
pp. 403-405 ◽  
Author(s):  
A.J. Holland

The construction of windscreen panels for modern aircraft is described and the role of each component in meeting the requirements for pressure strength, bird resistance and optical performance is discussed. The influence of the physical properties of the windscreen components on the performance of complete laminated windscreens is discussed and the limitations imposed by these properties indicated. Silicone inter‐layers are beginning to replace polyvinyl butyral inter‐layers in high‐speed aircraft laminated transparencies when the temperatures reached are above the working limit of the conventional interlayers. New types of glass capable of withstanding prolonged exposure to higher temperatures than soda lime silica glass without loss of toughening stress, and also capable of withstanding more severe thermal shock without fracture, have been developed.


2005 ◽  
Vol 351 (6-7) ◽  
pp. 455-465 ◽  
Author(s):  
Matthew H. Krohn ◽  
John R. Hellmann ◽  
Bernard Mahieu ◽  
Carlo G. Pantano

1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Sign in / Sign up

Export Citation Format

Share Document