scholarly journals Effects of MRI on Stemness Properties of Wharton’s Jelly Derived Mesenchymal Stem Cells

Author(s):  
Mahnaz Tashakori ◽  
Fatemeh Asadi ◽  
Faezeh-Sadat Khorram ◽  
Azita Manshoori ◽  
Ali Hosseini-Chegeni ◽  
...  

Abstract BackgroundMesenchymal stem cells (MSCs), derived from various tissues, have served as a promising source of cells in clinic and regenerative medicine. Umbilical cord-Wharton’s jelly (WJ-MSCs)-derived MSCs exhibit advantages over those from adult tissues, such as no ethical concerns, shorter population doubling time, broad differentiation potential, readily available non-invasive source, prolonged maintenance of stemness properties. Material and methodsThe aim of this study was to evaluate the effect of MRI (1.5 T, 10 min) on stemness gene expression patterns (OCT-4, SOX-2, NANOG) of WJ-MSCs. In addition, we assessed cell viability, growth kinetics and apoptosis of WJ-MSCs after MRI treatment. ResultsThe quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) data showed that transcript levels of SOX-2, NANOG in MRI-treated WJ-MSCs were increased 32- and 213-fold, respectively. MTT assay was performed at 24, 48, and 72 hours post-treatment and the viability was not significantly difference between two groups. The doubling time of MRI group was markedly higher than control group. In addition, the colony formation ability of WJ-MSCs after MRI treatment significantly increased. Furthermore, no change in apoptosis was seen before or after MRI treatment. ConclusionsOur results suggest the use of MRI can improve quality of MSCs and may enhance the efficacy of mesenchymal stem cell-based therapies.

2020 ◽  
Vol 21 (17) ◽  
pp. 6437
Author(s):  
Ashraf Al Madhoun ◽  
Sulaiman K. Marafie ◽  
Dania Haddad ◽  
Motasem Melhem ◽  
Mohamed Abu-Farha ◽  
...  

Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Lu Xu ◽  
Jianjun Zhou ◽  
Jingyu Liu ◽  
Yong Liu ◽  
Lei Wang ◽  
...  

Human mesenchymal stem cells derived from the umbilical cord (UC) are a favorable source for allogeneic cell therapy. Here, we successfully isolated the stem cells derived from three different compartments of the human UC, including perivascular stem cells derived from umbilical arteries (UCA-PSCs), perivascular stem cells derived from umbilical vein (UCV-PSCs), and mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs). These cells had the similar phenotype and differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. However, UCA-PSCs and UCV-PSCs had more CD146+ cells than WJ-MSCs (P<0.05). Tube formation assay in vitro showed the largest number of tube-like structures and branch points in UCA-PSCs among the three stem cells. Additionally, the total tube length in UCA-PSCs and UCV-PSCs was significantly longer than in WJ-MSCs (P<0.01). Microarray, qRT-PCR, and Western blot analysis showed that UCA-PSCs had the highest expression of the Notch ligand Jagged1 (JAG1), which is crucial for blood vessel maturation. Knockdown of Jagged1 significantly impaired the angiogenesis in UCA-PSCs. In summary, UCA-PSCs are promising cell populations for clinical use in ischemic diseases.


2020 ◽  
Vol 9 (9) ◽  
pp. 2913
Author(s):  
Ji Yeon Kang ◽  
Mi-Kyung Oh ◽  
Hansol Joo ◽  
Hyun Sung Park ◽  
Dong-Hoon Chae ◽  
...  

The therapeutic applications of mesenchymal stem cells (MSCs) have been actively explored due to their broad anti-inflammatory and immunomodulatory properties. However, the use of xenogeneic components, including fetal bovine serum (FBS), in the expansion media might pose a risk of xenoimmunization and zoonotic transmission to post-transplanted patients. Here, we extensively compared the physiological functions of human Wharton’s jelly-derived MSCs (WJ-MSCs) in a xeno-free medium (XF-MSCs) and a medium containing 10% FBS (10%-MSCs). Both groups showed similar proliferation potential; however, the 10%-MSCs showed prolonged expression of CD146, with higher colony-forming unit-fibroblast (CFU-F) ability than the XF-MSCs. The XF-MSCs showed enhanced adipogenic differentiation potential and sufficient hematopoietic stem cell (HSC) niche activity, with elevated niche-related markers including CXCL12. Furthermore, we demonstrated that the XF-MSCs had a significantly higher suppressive effect on human peripheral blood-derived T cell proliferation, Th1 and Th17 differentiation, as well as naïve macrophage polarization toward an M1 phenotype. Among the anti-inflammatory molecules, the production of indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase 2 (NOS2) was profoundly increased, whereas cyclooxygenase-2 (COX-2) was decreased in the XF-MSCs. Finally, the XF-MSCs had an enhanced therapeutic effect against mouse experimental colitis. These findings indicate that xeno-free culture conditions improved the immunomodulatory properties of WJ-MSCs and ex vivo-expanded XF-MSCs might be an effective strategy for preventing the progression of colitis.


2020 ◽  
Vol 32 (2) ◽  
pp. 194
Author(s):  
F. B. Duarte ◽  
S. N. Báo ◽  
M. Brígido ◽  
J. M. Araújo ◽  
E. d. O. Melo ◽  
...  

Cells from different origins behave differently regarding the incorporation of exogenous genetic material and the formation of transgenic cells. In this context, the objective of this study was to verify the potential of transfection of bovine mesenchymal stem cells from Wharton's jelly and adipose tissue, comparing two transfection protocols, using Lipofectamine LTX and Plus or Xfect reagents, with the integration of humanized anti-CD3. Skin fibroblasts were used as a control group. Humanized anti-CD3 is a monoclonal antibody that interacts with the CD3 molecule of the T-cell receptor, leading to the suppression of T-cells. This antibody is considered an option in the treatment of human autoimmune diseases and against the rejection of transplanted organs. Humanized anti-CD3 was used in this work for the production of bovine transgenic cells that, in the future, will be used in the development of bioreactor animals. In all steps of this study, cell types were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum (FCS) and antibiotics, in an incubator at 39°C with 5% CO2 in air with saturated humidity. All cells were plated at 5×105 into 24-well culture dishes and co-transfected with vector pBC1-anti-CD3-IRES-FEO and pEF-NEO-GFP using Lipofectamine LTX with reagent Plus or Xfect. Forty-eight hours after transfection, neomycin was added in each treatment and cells were cultured for 2 weeks. Treated cells were submitted to fluorescence microscopy, flow cytometry, and PCR evaluations. Wharton's jelly cells were sensitive to treatments and started necrosis. In the flow cytometry assay, the median fluorescence was higher in adipocytes than in fibroblasts, for both the Xfect reagent (20.057±1.620.7 and 10.601±702.86, respectively, P&lt;0.05) and for LTX (19.590±113.84 and 10.518±442.65 respectively, P&lt;0.05). These results, associated with the evaluation of epifluorescence, demonstrated that adipocytes presented a better response to transfection than did other cells, independent of the kit used. Performing PCR on co-transfected adipocytes and fibroblasts demonstrated the presence of anti-CD3, making this approach feasible in future experiments. Southern blotting analysis is being performed to confirm DNA integration. Financial support was provided by Fundação de Amparo à Pesquisa do Distrito Federal (FAPDF); Embrapa MP1.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4250-4250
Author(s):  
Jun Ho Jang ◽  
Hyun Woo Lee ◽  
Young-Woo Eom ◽  
Seok Yun Kang ◽  
Joon Seong Park ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are a highly promising source of adult stem cells for purposes of cell therapy and tissue repair in the field of regenerative medicine. Although the most studied and accessible source of MSC is the bone marrow, the clinical use of bone marrow-derived MSCs (BMSCs) has presented problems, including pain, morbidity, and low cell number upon harvest. For those reasons, we isolated, cultured, and characterized MSCs from a number of tissues; including wharton’s jelly, cord blood, and adipose tissues that were discarded routinely in the past, and evaluated the usefulness of these MSCs compared to BMSCs. Proliferation ability of Wharton’s jelly-derived MSCs (WJ-MSCs), Cord blood-derived MSCs (CB-MSCs), or adipose tissue-derived MSCs (ASCs) was lost at passage 8–10 (22–27 population doubling), passage 7–10, or passage 7–12 (45–50 population doubling), respectively. WJ-MSCs, CB-MSCs, and ASCs expressed CD73, CD90, and CD105, CD90, CD105, and CD166, and CD44, CD73, CD90, and CD166, respectively, were absent for CD14, CD31, and CD45, and differentiated into osteoblast, adipocyte, and chondrogenic lineages under appropriate culture condition. In this study, like BMSCs, WJ-MSCs, CB-MSCs, and ASCs expressed similar cell surface antigens, were able to differentiate into mesenchymal lineages, and possessed highly proliferation potential. Therefore, MSCs isolated from wharton’s jelly, cord blood, and adipose tissue may become useful alternative sources of MSCs to cell therapy and tissue repair in the field of regenerative medicine.


2019 ◽  
Vol 377 (2) ◽  
pp. 229-243
Author(s):  
Dinesh Bharti ◽  
Sharath Belame Shivakumar ◽  
Young-Bum Son ◽  
Young-Ho Choi ◽  
Imran Ullah ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 1102 ◽  
Author(s):  
Katarzyna Stefańska ◽  
Katarzyna Ożegowska ◽  
Greg Hutchings ◽  
Małgorzata Popis ◽  
Lisa Moncrieff ◽  
...  

Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton’s jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton’s jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton’s jelly, is a promising source of mesenchymal stem cells.


2014 ◽  
Vol 71 (8) ◽  
pp. 735-741 ◽  
Author(s):  
Jasmina Debeljak-Martacic ◽  
Jelena Francuski ◽  
Tijana Luzajic ◽  
Nemanja Vukovic ◽  
Slavko Mojsilovic ◽  
...  

Background/Aim. The last decade has been profoundly marked by persistent attempts to use ex vivo expanded and manipulated mesenchymal stem cells (MSCs), as a tool in different types of regenerative therapy. In the present study we described immunophenotype and the proliferative and differentiation potential of cells isolated from pulp remnants of exfoliated deciduous teeth in the final phase of root resorption. Methods. The initial adherent cell population from five donors was obtained by the outgrowth method. Colony forming unit-fibroblast (CFU-F) assay was performed in passage one. Cell expansion was performed until passage three and all tests were done until passage eight. Cells were labeled for early mesenchymal stem cells markers and analysis have been done using flow cytometry. The proliferative potential was assessed by cell counting in defined time points and population doubling time was calculated. Commercial media were used to induce osteoblastic, chondrogenic and adipogenic differentiation. Cytology and histology methods were used for analysis of differentiated cell morphology and extracellular matrix characteristics. Results. According to immunophenotype analyses all undifferentiated cells were positive for the mesenchymal stem cell markers: CD29 and CD73. Some cells expressed CD146 and CD106. The hematopoietic cell marker, CD34, was not detected. In passage one, incidence of CFU-F was 4.7 ? 0.5/100. Population doubling time did not change significantly during cell subcultivation and was in average 25 h. After induction of differentiation, the multicolony derived cell population had a tri-lineage differentiation potential, since mineralized matrix, cartilage-like tissue and adipocytes were successfully formed after three weeks of incubation. Conclusion. Altogether, these data suggest that remnants of deciduous teeth dental pulp contained cell populations with mesenchymal stem cell-like features, with a high proliferation and trilineage differentiation potential and that these cultures are suitable for further in vitro evaluation of cell based therapies.


2021 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Min-Soo Seo ◽  
Kyung-Ku Kang ◽  
Se-Kyung Oh ◽  
Soo-Eun Sung ◽  
Kil-Soo Kim ◽  
...  

Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton’s jelly of cats and to characterize stem cells. In this study, feline Wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.


Sign in / Sign up

Export Citation Format

Share Document