Si-based light emitters synthesized with Ge+ ion bombardment

2021 ◽  
Vol 130 (15) ◽  
pp. 153101
Author(s):  
V. A. Zinovyev ◽  
A. F. Zinovieva ◽  
Zh. V. Smagina ◽  
A. V. Dvurechenskii ◽  
V. I. Vdovin ◽  
...  
Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


Author(s):  
І. Є. Митропольський ◽  
В. С. Буксар ◽  
С. С. Поп ◽  
І. С. Шароді

2008 ◽  
Author(s):  
James L. Topper ◽  
Binyamin Rubin ◽  
Cody C. Farnell ◽  
Azer P. Yalin

2005 ◽  
Vol 892 ◽  
Author(s):  
Andrei Osinsky ◽  
Jianwei Dong ◽  
J. Q. Xie ◽  
B. Hertog ◽  
A. M. Dabiran ◽  
...  

AbstractThis paper reviews of some of the progress made in the development of ZnO-based light emitting diodes (LEDs). n-ZnO/p-AlGaN-based heterostructures have been successfully for the fabrication of UV emitting LEDs that have operated at temperatures up to 650K, suggesting an excitonic origin for the optical transitions. RF-plasma-assisted molecular beam epitaxy has been used to grow epitaxial CdxZn1-xO films on GaN/sapphire structure. These films have a single-crystal wurtzite structure as demonstrated by structural and compositional analysis. High quality CdxZn1-xO films were grown with up to x=0.78 mole fraction as determined by RBS and SIMS techniques. Optical emission ranging from purple (Cd0.05Zn0.95O) to yellow (Cd0.29Zn0.71O) was observed. Compositional fluctuations in a Cd0.16Zn0.84O films were not detected by spatially resolved CL measurements, although intensity fluctuation with features of ∼0.5 μm diameter were seen on the intensity maps. Time resolved photoluminescence shows multi-exponential decay with 21 psec. and 49±3 psec. lifetimes, suggesting that composition micro-fluctuations may be present in Cd0.16Zn0.84O film.


Author(s):  
S B Donaev ◽  
J A Normuminov ◽  
A M Rakhimov ◽  
D Muminova ◽  
L H Nishonova
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agata Bojarska-Cieślińska ◽  
Łucja Marona ◽  
Julita Smalc-Koziorowska ◽  
Szymon Grzanka ◽  
Jan Weyher ◽  
...  

AbstractIn this work we investigate the role of threading dislocations in nitride light emitters with different indium composition. We compare the properties of laser diodes grown on the low defect density GaN substrate with their counterparts grown on sapphire substrate in the same epitaxial process. All structures were produced by metalorganic vapour phase epitaxy and emit light in the range 383–477 nm. We observe that intensity of electroluminescence is strong in the whole spectral region for devices grown on GaN, but decreases rapidly for the devices on sapphire and emitting at wavelength shorter than 420 nm. We interpret this behaviour in terms of increasing importance of dislocation related nonradiative recombination for low indium content structures. Our studies show that edge dislocations are the main source of nonradiative recombination. We observe that long wavelength emitting structures are characterized by higher average light intensity in cathodoluminescence and better thermal stability. These findings indicate that diffusion path of carriers in these samples is shorter, limiting the amount of carriers reaching nonradiative recombination centers. According to TEM images only mixed dislocations open into the V-pits, usually above the multi quantum wells thus not influencing directly the emission.


Sign in / Sign up

Export Citation Format

Share Document