scholarly journals Role of dislocations in nitride laser diodes with different indium content

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agata Bojarska-Cieślińska ◽  
Łucja Marona ◽  
Julita Smalc-Koziorowska ◽  
Szymon Grzanka ◽  
Jan Weyher ◽  
...  

AbstractIn this work we investigate the role of threading dislocations in nitride light emitters with different indium composition. We compare the properties of laser diodes grown on the low defect density GaN substrate with their counterparts grown on sapphire substrate in the same epitaxial process. All structures were produced by metalorganic vapour phase epitaxy and emit light in the range 383–477 nm. We observe that intensity of electroluminescence is strong in the whole spectral region for devices grown on GaN, but decreases rapidly for the devices on sapphire and emitting at wavelength shorter than 420 nm. We interpret this behaviour in terms of increasing importance of dislocation related nonradiative recombination for low indium content structures. Our studies show that edge dislocations are the main source of nonradiative recombination. We observe that long wavelength emitting structures are characterized by higher average light intensity in cathodoluminescence and better thermal stability. These findings indicate that diffusion path of carriers in these samples is shorter, limiting the amount of carriers reaching nonradiative recombination centers. According to TEM images only mixed dislocations open into the V-pits, usually above the multi quantum wells thus not influencing directly the emission.

2000 ◽  
Vol 5 (S1) ◽  
pp. 259-265 ◽  
Author(s):  
C. Giannini ◽  
E. Carlino ◽  
L. Tapfer ◽  
F. Höhnsdorf ◽  
J. Koch ◽  
...  

In this work, we investigate the structural properties of (GaIn)(AsN)/GaAs multiple quantum wells (MQW) grown at low temperature by metalorganic vapour phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. We demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. Our experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones.


Author(s):  
A. Carlsson ◽  
J.-O. Malm ◽  
A. Gustafsson

In this study a quantum well/quantum wire (QW/QWR) structure grown on a grating of V-grooves has been characterized by a technique related to chemical lattice imaging. This technique makes it possible to extract quantitative information from high resolution images.The QW/QWR structure was grown on a GaAs substrate patterned with a grating of V-grooves. The growth rate was approximately three monolayers per second without growth interruption at the interfaces. On this substrate a barrier of nominally Al0.35 Ga0.65 As was deposited to a thickness of approximately 300 nm using metalorganic vapour phase epitaxy . On top of the Al0.35Ga0.65As barrier a 3.5 nm GaAs quantum well was deposited and to conclude the structure an additional approximate 300 nm Al0.35Ga0.65 As was deposited. The GaAs QW deposited in this manner turns out to be significantly thicker at the bottom of the grooves giving a QWR running along the grooves. During the growth of the barriers an approximately 30 nm wide Ga-rich region is formed at the bottom of the grooves giving a Ga-rich stripe extending from the bottom of each groove to the surface.


2015 ◽  
Vol 631 ◽  
pp. 283-287 ◽  
Author(s):  
Tao Lin ◽  
Hang Sun ◽  
Haoqing Zhang ◽  
Yonggang Wang ◽  
Nan Lin ◽  
...  

1996 ◽  
Vol 32 (16) ◽  
pp. 1491
Author(s):  
J.S. Roberts ◽  
C.J. Hamilton ◽  
K. McIlvaney ◽  
J.H. Marsh

1999 ◽  
Vol 595 ◽  
Author(s):  
C. Giannini ◽  
E. Carlino ◽  
L. Tapfer ◽  
F. Höhnsdorf ◽  
J. Koch ◽  
...  

AbstractIn this work, we investigate the structural properties of (GaIn)(AsN)/GaAs multiplequantum wells (MQW) grown at low temperature by metalorganic vapour phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. We demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. Our experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones.


2000 ◽  
Vol 618 ◽  
Author(s):  
U. Pietsch ◽  
U. Zeimer ◽  
L. Hofmann ◽  
J. Grenzer ◽  
S. Gramlich

ABSTRACTStrain and compositional modulation in AlxGa1−xAs layers grown by metalorganic vapour phase epitaxy (MOVPE) over a sinusoidally shaped GaAs (001) surface grating were studied by scanning electron microscopy (SEM), X-ray grazing-incidence diffraction (GID) and photoluminescence (PL). Two growth temperatures and two compositions were chosen to realize planar overlayers. By SEM a periodic reduction in Al-content was found at the valley positions of the GaAs grating. The appearance of such vertical quantum wells (VQWs) has been explained by the growth rate anisotropy between high-index and (001) planes and a curvature-induced capillarity flow of Ga. Estimated from PL energies a larger reduction of the Al-concentration in the VQW and also at the high-index sidewall facets was found than compared to predictions from the capillarity flow theory. Using depth-resolved GID we show that the formation of VQWs is accompanied by a periodic lateral strain field. Therefore we assume, that the formation of the VQWs is influenced by strain induced diffusion due to the interaction of opposite sidewall facets.


1993 ◽  
Vol 20 (1-2) ◽  
pp. 66-68 ◽  
Author(s):  
R. Schwedler ◽  
B. Gallmann ◽  
K. Wolter ◽  
A. Kohl ◽  
K. Leo ◽  
...  

2014 ◽  
Vol 115 (23) ◽  
pp. 233511 ◽  
Author(s):  
Marlene Glauser ◽  
Christian Mounir ◽  
Georg Rossbach ◽  
Eric Feltin ◽  
Jean-François Carlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document