One of possible approaches to estimating the service life of a wheel set axle of high-speed rolling stock

2021 ◽  
Author(s):  
G. M. Volokhov ◽  
A. A. Lunin ◽  
D. A. Knyazev ◽  
V. V. Chunin ◽  
M. V. Timakov
2020 ◽  
Vol 157 ◽  
pp. 01022
Author(s):  
Victor Philippov ◽  
Alexandr Smerdin

The use of contact elements with an extended service life is one of the most economical and least costly ways to ensure reliable, economical and environmentally friendly transmission of electricity to rolling stock. To evaluate the service life in OSTU, a methodology for conducting experimental studies of contact pairs of pantograph has been developed and successfully tested, involving bench tests for each pair of contact materials “contact insert - contact wire” in order to determine their optimal combination to reduce wear and increase service life. Assessment of the amount of wear and prediction of the life of the contact elements are made, including using mathematical modeling. The purpose of this article is to improve the mechanical component of the wear model of the contact elements of pantograph in high-speed conditions. The results of experimental studies and theoretical calculations of the mechanical wear of contact elements are presented. The analysis of the graphs allows us to conclude that it is possible to use an improved mathematical model for modeling the mechanical component of the wear process of the elements of contact pairs with a maximum error value of not more than 5%.


2021 ◽  
Vol 80 (2) ◽  
pp. 86-90
Author(s):  
V. A. Makarov

The article describes a new bench for testing the reliability of passenger car windows and doors. The bench can be used in various industries, mainly in transport engineering, as well as in the construction industry. This bench is functionally designed to test the entire product (windows or doors), as well as to determine the service life of individual mechanisms of this product. In contrast to the known analogs, the new bench for testing the reliability of windows and doors allows testing under the influence of variable aerodynamic pressure arising from the operation of windows and doors on moving objects, for example on high-speed transport. Specially developed test method is proposed on this bench, which allows simulating alternating aerodynamic effects on windows and doors that occur when a train passes tunnels or when trains in opposite directions diverge at high speeds. Thanks to this, bench tests can serve as an actual addition to the existing methods of testing windows and doors of modern high-speed rolling stock.


Author(s):  
A. V. Gaivoronoskii ◽  
N. V. Pavlova

The increase in freight cars axis loads, dynamic loads and heat impact on the wheels, change of other factors, stipulated by railway transport traffic intensification lead to considerable decrease of service life of solid-rolled wheels. To increase the service life of them, provision of the transport metal purity in non-deformed oxide nonmetallic inclusions with high content of Al2O3, decrease of general steel pollution by nonmetallic inclusions by micro-alloying and modification is an actual task. The purpose of the study was elaboration of wheel steel ladle treatment technology, including the steel micro-alloying and modification by barium-containing alloys to create material, which could meet high operation requirements, made to the railway wheels of new generation, intended to operate under increased axis loads conditions at the modern high-speed rolling-stock. It was shown, that replacement of everywhere applied silicocalcium by barium-based alloys is one of perspective ways of modification mechanism perfection. Results of industrial tests of micro-alloying of wheel steel by barium during ladle treatment presented. It was shown, that application for modification of cored wire with silicobarium filler instead of cored wire with silicocalsium filler СК-30, enabled to transform the nonmetallic inclusions into globular form practically completely, to raise the steel purity for all kinds of inclusions in both middle and maximum points range and to refine to some extent the grain size by 1-2 points. In the pilot metal at the depth of 40 mm from the surface, the gain was somewhat finer and more uniform (number 7), comparing with the existing technology (number 5-6). The pollution of the pilot metal by nonmetallic inclusions meets requirements of GOST 10791—2011 for category A and those of the standard EN 13262: 2004+А2:2011 for category 1.


2020 ◽  
pp. 74-78
Author(s):  
A.E. Dreval

The assessment of the limiting state of high-speed machine-manual taps in the processing of structural steel billets is considered. A general multi-parameter dependence is developed for calculating the criterion of allowable wear, which makes it possible to rationally use the tool life and normalize the cut amount during regrinding. Keywords thread cutting, tap, angle of the cutting part, criterion, high-speed steel, wear, failure, life, service life. [email protected]


2016 ◽  
Vol 693 ◽  
pp. 1585-1590
Author(s):  
Yi Zhuo Guo ◽  
Xian Guo Yan ◽  
Shu Juan Li ◽  
Hong Guo

Many studies have proved the service life of cutter can be prolonged by electrolytic strengthening. Based on the theory of electrolytic strengthening technology, this paper introduced and developed prototype equipment for strengthening cutting edge of rotary cutter and put forward a calculation method of total electric quantity consumption during the electrolysis suitable for microcontroller. The M8 high-speed steel tap is taken as a strengthening example. After finished the strengthening process that it clearly see the results of the surface of tap was obviously polished by observing the micrograph. This equipment improves the reliability of electrolytic strengthening and the cost is relatively cheap.


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3609
Author(s):  
Mykola Sysyn ◽  
Michal Przybylowicz ◽  
Olga Nabochenko ◽  
Lei Kou

The ballasted track superstructure is characterized by a relative quick deterioration of track geometry due to ballast settlements and the accumulation of sleeper voids. The track zones with the sleeper voids differ from the geometrical irregularities with increased dynamic loading, high vibration, and unfavorable ballast-bed and sleeper contact conditions. This causes the accelerated growth of the inhomogeneous settlements, resulting in maintenance-expensive local instabilities that influence transportation reliability and availability. The recent identification and evaluation of the sleeper support conditions using track-side and on-board monitoring methods can help planning prevention activities to avoid or delay the development of local instabilities such as ballast breakdown, white spots, subgrade defects, etc. The paper presents theoretical and experimental studies that are directed at the development of the methods for sleeper support identification. The distinctive features of the dynamic behavior in the void zone compared to the equivalent geometrical irregularity are identified by numeric simulation using a three-beam dynamic model, taking into account superstructure and rolling stock dynamic interaction. The spectral features in time domain in scalograms and scattergrams are analyzed. Additionally, the theoretical research enabled to determine the similarities and differences of the dynamic interaction from the viewpoint of track-side and on-board measurements. The method of experimental investigation is presented by multipoint track-side measurements of rail-dynamic displacements using high-speed video records and digital imaging correlation (DIC) methods. The method is used to collect the statistical information from different-extent voided zones and the corresponding reference zones without voids. The applied machine learning methods enable the exact recent void identification using the wavelet scattering feature extraction from track-side measurements. A case study of the method application for an on-board measurement shows the moderate results of the recent void identification as well as the potential ways of its improvement.


2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary


2018 ◽  
Vol 216 ◽  
pp. 01015
Author(s):  
Darya Provornaya ◽  
Sergey Glushkov ◽  
Leonid Solovyev

The paper considers the issues of vibration isolation of railway bridge units on high-speed lines and seismic protection using dynamic vibration dampers. The purpose of the research is to justify the efficiency of damping the dynamic vibrations of the bridge supports with seismic insulating support parts. The research methodology involves building mathematical models of the systems under consideration and their numerical analysis. The methods of structural mechanics and dynamics of structures were used for solving the assigned tasks. The basic mathematical dependences of the vibration system with two seismic masses were developed. The rolling stock was represented by concentrated forces moving along the span structure. As a result, a new scheme for dynamic damping of vibration of the bridge supports was proposed according to which the span structure used as the dynamic vibration damper has an additional fastening on a rigid abutment.


Sign in / Sign up

Export Citation Format

Share Document