Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime

2022 ◽  
Vol 120 (1) ◽  
pp. 014001
Author(s):  
Jaesung Lee ◽  
Matthew D. LaHaye ◽  
Philip X.-L. Feng
2019 ◽  
Vol 95 (3) ◽  
pp. 62-67
Author(s):  
D.A. Volkov ◽  
◽  
Ye.V. Terenteva ◽  
S.A. Beznosyuk ◽  
◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Dominik Hahn ◽  
Juan-Diego Urbina ◽  
Klaus Richter ◽  
Rémy Dubertrand ◽  
S. L. Sondhi

2021 ◽  
Vol 56 (12) ◽  
pp. 7171-7230
Author(s):  
Orlando Auciello ◽  
Dean M. Aslam

AbstractA comprehensive review is presented on the advances achieved in past years on fundamental and applied materials science of diamond films and engineering to integrate them into new generations of microelectromechanical system (MEMS) and nanoelectromechanical systems (NEMS). Specifically, the review focuses on describing the fundamental science performed to develop thin film synthesis processes and the characterization of chemical, mechanical, tribological and electronic properties of microcrystalline diamond, nanocrystalline diamond and ultrananocrystalline diamond films technologies, and the research and development focused on the integration of the diamond films with other film-based materials. The review includes both theoretical and experimental work focused on optimizing the films synthesis and the resulting properties to achieve the best possible MEMS/NEMS devices performance to produce new generation of MEMS/NEMS external environmental sensors and energy generation devices, human body implantable biosensors and energy generation devices, electron field emission devices and many more MEMS/NEMS devices, to produce transformational positive impact on the way and quality of life of people worldwide.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 541
Author(s):  
Muhammad Imran Khan ◽  
Ahmed S. Alshammari ◽  
Badr M. Alshammari ◽  
Ahmed A. Alzamil

This work deals with the analysis of spectrum generation from advanced integrated circuits in order to better understand how to suppress the generation of high harmonics, especially in a given frequency band, to design and implement noise-free systems. At higher frequencies, the spectral components of signals with sharp edges contain more energy. However, current closed-form expressions have become increasingly unwieldy to compute higher-order harmonics. The study of spectrum generation provides an insight into suppressing higher-order harmonics (10th order and above), especially in a given frequency band. In this work, we discussed the influence of transistor model quality and input signal on estimates of the harmonic contents of switching waveforms. Accurate estimates of harmonic contents are essential in the design of highly integrated micro- and nanoelectromechanical systems. This paper provides a comparative analysis of various flip-flop/latch topologies on different process technologies, i.e., 130 and 65 nm. An FFT plot of the simulated results signifies that the steeper the spectrum roll-off, the lesser the content of higher-order harmonics. Furthermore, the results of the comparison illustrate the improvement in the rise time, fall time, clock-Q delay and spectrum roll-off on the better selection of slow-changing input signals and more accurate transistor models.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


2004 ◽  
Vol 84 (23) ◽  
pp. 4756-4758 ◽  
Author(s):  
Y. Takagaki ◽  
Y. J. Sun ◽  
O. Brandt ◽  
K. H. Ploog

2006 ◽  
Vol 355 (4-5) ◽  
pp. 289-292 ◽  
Author(s):  
D. Schildknecht ◽  
B.G. Zakharov

Sign in / Sign up

Export Citation Format

Share Document