The Collection of National Land-Use Statistics in Great Britain: A Critique

1978 ◽  
Vol 10 (3) ◽  
pp. 295-303 ◽  
Author(s):  
G C Dickinson ◽  
M G Shaw

The collection of land-use change statistics under DoE Circular 71/74 is criticised on three grounds. First, there is no standard land-use classification employed consistently by all local authorities. Second, there is no standard and unambiguous set of areal units to which such a classification could be applied. Third, there is no efficient means of collecting land-use data in a form which meets the information needs of policymakers. Adoption of a standard land-use classification applied to functional units is advocated. It is argued that point sampling is a cheap and efficient means of collecting land-use statistics in a form which meets planning needs. The advantages of point sampling compared with alternative techniques are considered in detail.

2019 ◽  
Vol 12 ◽  
pp. 41-56
Author(s):  
Chhabi Lal Chidi ◽  
Wolfgang Sulzer ◽  
Pushkar Kumar Pradhan

 Depopulation and increasing greenery due to agriculture land abandonment is general scenario in many highlands of Nepal in recent decades. High resolution remote sensing image is used in land use change analysis. Recently, object based image analysis technique has helped to improve the land use classification accuracies using object based image analysis. Thus, this study was carried out with high resolution image data sources and innovative technique of land use classification in the northeast part of Andhikhola watershed, in the Middle Hill of Nepal. Increasing greenery due to agriculture land abandonment in the hill slope is the major land use change. Secondly, increasing built-up area in lowland along the highway is another. Decreasing hill farmers is the major drivers of converting cultivated land into vegetated area and increasing built-up area is due to urbanization and shift of rural people from hill slope to lowland and accessible area. Converting cultivated land into forest, shrubs and grassland is at marginal land and remote areas which is mostly controlled by altitude, slope gradient and slope aspect. Additionally, land suitability and accessibility are also other important controlling factors.


Urban Science ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 108 ◽  
Author(s):  
Nimi Dan-Jumbo ◽  
Marc Metzger ◽  
Andrew Clark

Cities in developing countries are urbanising at a rapid rate, resulting in substantial pressures on environmental systems. Among the main factors that lead to flooding, controlling land-use change offers the greatest scope for the management of risk. However, traditional analysis of a “from–to” change matrix is not adequate to provide information of all the land-use changes that occur in a watershed. In this study, an in-depth analysis of land-use change enabled us to quantify the bulk of the changes accumulating from swap changes in a tropical watershed. This study assessed the historical and future land-use/land-cover (LULC) dynamics in the River State region of the Niger Delta. Land-use classification and change detection analysis was conducted using multi-source (Landsat TM, ETM, polygon map, and hard copy) data of the study area for 1986, 1995, and 2003, and projected conditions in 2060. The key findings indicate that historical urbanisation was rapid; urban expansion could increase by 80% in 2060 due to planned urban development; and 95% of the conversions to urban land occurred chiefly at the expense of agricultural land. Urban land was dominated by net changes rather than swap changes, which in the future could amplify flood risk and have other severe implications for the watershed.


2018 ◽  
Vol 628-629 ◽  
pp. 1234-1248 ◽  
Author(s):  
Samuel J. Tomlinson ◽  
Ulrike Dragosits ◽  
Peter E. Levy ◽  
Amanda M. Thomson ◽  
Janet Moxley

2006 ◽  
Vol 30 (5) ◽  
pp. 589-604 ◽  
Author(s):  
Simon A. Foulds ◽  
Mark G. Macklin

River basins in Great Britain and Ireland have been characterized by periods of hillslope and valley floor instability during the Holocene, reflecting sensitivity to both climate change and anthropogenic disturbance. In contrast to climatic controls, which have been relatively well documented, human impacts on and interactions with river basins remain unclear. There is now, however, a growing impetus to elucidate more fully the impact of anthropogenic activity on sediment supply and runoff, given that land-use change is thought to have exacerbated recent flooding in the UK (eg, the ‘Millennium'floods of 2000). The aim of this paper is to critically review the significance of Holocene land use on hillslope and valley floor stability in Great Britain and Ireland. The most widely reported impacts of land-use change on geomorphic activity include hillslope erosion and gully development, valley floor alluviation, river channel incision and elevated water tables. In the majority of cases, however, causal relationships are difficult to establish, due primarily to inadequate dating control. Even where geomorphic instability can be linked to land-use change, it is apparent that eroded material is often stored as colluvium, which together with evidence of diachronus hillslope and valley floor instability, raises important questions and identifies uncertainties regarding the dynamics and extent of sediment transfer within river basins. Such uncertainty has important implications for understanding how river basins will behave in response to future environmental change.


2010 ◽  
Vol 7 (2) ◽  
pp. 2267-2311 ◽  
Author(s):  
P. M. Chamberlain ◽  
B. A. Emmett ◽  
W. A. Scott ◽  
H. I. J. Black ◽  
M. Hornung ◽  
...  

Abstract. Soil is an important store of carbon (C) and there has been recent concern that accelerated loss of carbon from the soil may be reinforcing climate change. There is therefore a need to both track current trends in soil C storage and to identify how soil can contribute to carbon emission reduction targets. Countryside Survey (CS) is an integrated national monitoring program in which vegetation, topsoil, water and land use measurements are made across Great Britain (GB). The soil component of CS is unique as topsoil C concentrations have been measured at three time points (1978, 1998 and 2007) together with topsoil bulk density (2007 only), vegetation composition (all years), and land use (i.e. Broad Habitat, 1998, 2007). The combined dataset allows estimates of change in topsoil C stock over time and the influence of land use change on topsoil C to be investigated. Results indicate that although there was a small increase (8%) in topsoil C concentration between 1978 and 1998 and small decrease (6.5%) between 1998 and 2007, there was no significant change in GB topsoil C concentration (in g kg−1), density (in t ha−1) or stock (in Tg) between 1978 and 2007. Within individual habitats some consistent trends were observed and by examining plots which had consistent vegetation composition since 1978 we demonstrate that land use change was not responsible for the few significant changes that were found. These results are comparable with the few other estimates of recent topsoil C concentration and stock changes in W. Europe, with the exception of a previous study in England and Wales which reported significant topsoil C losses of up to 50% over a similar period. Possible reasons for the contradictory findings are discussed. An extra 220–730 Tg of C would be stored in topsoil C stocks if all GB soils were optimised at the top 5–25% C densities as recorded for each habitat in 2007.


GCB Bioenergy ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 541-552 ◽  
Author(s):  
Aidan M. Keith ◽  
Rebecca L. Rowe ◽  
Kim Parmar ◽  
Mike P. Perks ◽  
Ewan Mackie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document